IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4505-d1473893.html
   My bibliography  Save this article

Electric Vehicle Charging Load Demand Forecasting in Different Functional Areas of Cities with Weighted Measurement Fusion UKF Algorithm

Author

Listed:
  • Minan Tang

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Xi Guo

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jiandong Qiu

    (College of Electrical and Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Jinping Li

    (College of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Bo An

    (College of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

The forecasting of charging demand for electric vehicles (EVs) plays a vital role in maintaining grid stability and optimizing energy distribution. Therefore, an innovative method for the prediction of EV charging load demand is proposed in this study to address the downside of the existing techniques in capturing the spatial–temporal heterogeneity of electric vehicle (EV) charging loads and predicting the charging demand of electric vehicles. Additionally, an innovative method of electric vehicle charging load demand forecasting is proposed, which is based on the weighted measurement fusion unscented Kalman filter (UKF) algorithm, to improve the accuracy and efficiency of forecasting. First, the data collected from OpenStreetMap and Amap are used to analyze the distribution of urban point-of-interest (POI), to accurately classify the functional areas of the city, and to determine the distribution of the urban road network, laying a foundation for modeling. Second, the travel chain theory was applied to thoroughly analyze the travel characteristics of EV users. The Improved Floyd (IFloyd) algorithm is used to determine the optimal route. Also, a Monte Carlo simulation is performed to estimate the charging load for electric vehicle users in a specific region. Then, a weighted measurement fusion UKF (WMF–UKF) state estimator is introduced to enhance the accuracy of prediction, which effectively integrates multi-source data and enables a more detailed prediction of the spatial–temporal distribution of load demand. Finally, the proposed method is validated comparatively against traffic survey data and the existing methods by conducting a simulation experiment in an urban area. The results show that the method proposed in this paper is applicable to predict the peak hours more accurately compared to the reference method, with the accuracy of first peak prediction improved by 53.53% and that of second peak prediction improved by 23.23%. The results not only demonstrate the high performance of the WMF–UKF prediction model in forecasting peak periods but also underscore its potential in supporting grid operations and management, which provides a new solution to improving the accuracy of EV load demand forecasting.

Suggested Citation

  • Minan Tang & Xi Guo & Jiandong Qiu & Jinping Li & Bo An, 2024. "Electric Vehicle Charging Load Demand Forecasting in Different Functional Areas of Cities with Weighted Measurement Fusion UKF Algorithm," Energies, MDPI, vol. 17(17), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4505-:d:1473893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4505/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4505/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guoqing Jin & Lan Li & Yidan Xu & Minghui Hu & Chunyun Fu & Datong Qin, 2020. "Comparison of SOC Estimation between the Integer-Order Model and Fractional-Order Model Under Different Operating Conditions," Energies, MDPI, vol. 13(7), pages 1-17, April.
    2. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    3. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    4. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    5. Yong Tian & Bizhong Xia & Mingwang Wang & Wei Sun & Zhihui Xu, 2014. "Comparison Study on Two Model-Based Adaptive Algorithms for SOC Estimation of Lithium-Ion Batteries in Electric Vehicles," Energies, MDPI, vol. 7(12), pages 1-19, December.
    6. Yang, Zunxian & Meng, Qing & Yan, Wenhuan & Lv, Jun & Guo, Zaiping & Yu, Xuebin & Chen, Zhixin & Guo, Tailiang & Zeng, Rong, 2015. "Novel three-dimensional tin/carbon hybrid core/shell architecture with large amount of solid cross-linked micro/nanochannels for lithium ion battery application," Energy, Elsevier, vol. 82(C), pages 960-967.
    7. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    8. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    9. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    10. Wenhui Zheng & Bizhong Xia & Wei Wang & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2019. "State of Charge Estimation for Power Lithium-Ion Battery Using a Fuzzy Logic Sliding Mode Observer," Energies, MDPI, vol. 12(13), pages 1-14, June.
    11. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    12. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    13. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    14. Liu, Nian & Chen, Zheng & Liu, Jie & Tang, Xiao & Xiao, Xiangning & Zhang, Jianhua, 2014. "Multi-objective optimization for component capacity of the photovoltaic-based battery switch stations: Towards benefits of economy and environment," Energy, Elsevier, vol. 64(C), pages 779-792.
    15. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    16. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    17. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
    18. Zheng, Yuejiu & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Ma, Hongbin & Dollmeyer, Thomas A. & Freyermuth, Vincent, 2013. "Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model," Applied Energy, Elsevier, vol. 111(C), pages 571-580.
    19. Xing, Yinjiao & He, Wei & Pecht, Michael & Tsui, Kwok Leung, 2014. "State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures," Applied Energy, Elsevier, vol. 113(C), pages 106-115.
    20. Yang, Zunxian & Meng, Qing & Guo, Zaiping & Yu, Xuebin & Guo, Tailiang & Zeng, Rong, 2013. "Highly reversible lithium storage in uniform Li4Ti5O12/carbon hybrid nanowebs as anode material for lithium-ion batteries," Energy, Elsevier, vol. 55(C), pages 925-932.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4505-:d:1473893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.