IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i17p4451-d1471813.html
   My bibliography  Save this article

Numerical Investigation on the Thermal Performance of a Battery Pack by Adding Ribs in Cooling Channels

Author

Listed:
  • Jiadian Wang

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
    The 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150010, China)

  • Dongyang Lv

    (Department of the First Research, Nuclear Power Institute of China, Chengdu 510100, China)

  • Haonan Sha

    (The 703 Research Institute of China Shipbuilding Industry Corporation, Harbin 150010, China)

  • Chenguang Lai

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Junxiong Zeng

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Tieyu Gao

    (School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

  • Hao Yang

    (Vehicle Engineering Institute, Chongqing University of Technology, Chongqing 400054, China)

  • Hang Wu

    (Chongqing Tsingshan Industria Co., Ltd., Chongqing 402761, China)

  • Yanjun Jiang

    (Chongqing Tsingshan Industria Co., Ltd., Chongqing 402761, China)

Abstract

The thermal performance of a lithium-ion battery pack for an electric vehicle by adding straight rib turbulators in battery cooling plate channels has been numerically investigated in this paper and the numerical model of the battery pack has been validated by experimental data, which exhibits a satisfactory prediction accuracy. The effects of rib shapes, rib angles, rib spacings, and irregular gradient rib arrangement configurations on the flow and heat transfer behaviors of battery pack cooling plates have been thoroughly explored and analyzed in this paper. In addition, the thermal performance of the ribbed battery cooling plates was examined at actual high-speed climbing and low-temperature heating operating conditions. The results indicate that compared to the original smooth cooling plate, the square-ribbed battery cooling plate with a 60° angle and 5 mm spacing reduced the maximum battery temperature by 0.3 °C, but increased the cross-sectional temperature difference by 0.357 °C. To address this issue, a gradient rib arrangement was proposed, which slightly reduced the maximum battery temperature and lowered the cross-sectional temperature difference by 0.445 °C, significantly improving temperature uniformity. The thermal performance of the battery thermal management system with this gradient rib configuration meets the requirements for typical electric vehicle operating conditions, such as high-speed climbing and low-temperature heating conditions.

Suggested Citation

  • Jiadian Wang & Dongyang Lv & Haonan Sha & Chenguang Lai & Junxiong Zeng & Tieyu Gao & Hao Yang & Hang Wu & Yanjun Jiang, 2024. "Numerical Investigation on the Thermal Performance of a Battery Pack by Adding Ribs in Cooling Channels," Energies, MDPI, vol. 17(17), pages 1-24, September.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4451-:d:1471813
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/17/4451/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/17/4451/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Kai & Song, Mengxuan & Wei, Wei & Wang, Shuangfeng, 2018. "Structure optimization of parallel air-cooled battery thermal management system with U-type flow for cooling efficiency improvement," Energy, Elsevier, vol. 145(C), pages 603-613.
    2. Mali, Vima & Saxena, Rajat & Kumar, Kundan & Kalam, Abul & Tripathi, Brijesh, 2021. "Review on battery thermal management systems for energy-efficient electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    3. De Vita, Armando & Maheshwari, Arpit & Destro, Matteo & Santarelli, Massimo & Carello, Massimiliana, 2017. "Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications," Applied Energy, Elsevier, vol. 206(C), pages 101-112.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sevgi Aydın & Umut Ege Samancıoğlu & İsmail Hakkı Savcı & Kadri Süleyman Yiğit & Erdal Çetkin, 2025. "Impact of Cooling Strategies and Cell Housing Materials on Lithium-Ion Battery Thermal Management Performance," Energies, MDPI, vol. 18(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gharehghani, Ayat & Rabiei, Moeed & Mehranfar, Sadegh & Saeedipour, Soheil & Mahmoudzadeh Andwari, Amin & García, Antonio & Reche, Carlos Mico, 2024. "Progress in battery thermal management systems technologies for electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    2. Ziming Xu & Jun Xu & Zhechen Guo & Haitao Wang & Zheng Sun & Xuesong Mei, 2022. "Design and Optimization of a Novel Microchannel Battery Thermal Management System Based on Digital Twin," Energies, MDPI, vol. 15(4), pages 1-20, February.
    3. Al-Zareer, Maan & Dincer, Ibrahim & Rosen, Marc A., 2019. "Comparative assessment of new liquid-to-vapor type battery cooling systems," Energy, Elsevier, vol. 188(C).
    4. Faghihian, Hamed & Sargolzaei, Arman, 2025. "A novel energy-efficient automated regenerative braking system," Applied Energy, Elsevier, vol. 390(C).
    5. Lin, Xiang-Wei & Li, Yu-Bai & Wu, Wei-Tao & Zhou, Zhi-Fu & Chen, Bin, 2024. "Advances on two-phase heat transfer for lithium-ion battery thermal management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    6. Suresh, C. & Awasthi, Abhishek & Kumar, Binit & Im, Seong-kyun & Jeon, Yongseok, 2025. "Advances in battery thermal management for electric vehicles: A comprehensive review of hybrid PCM-metal foam and immersion cooling technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
    7. Zichen, Wang & Changqing, Du, 2021. "A comprehensive review on thermal management systems for power lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    8. Saw, Lip Huat & Poon, Hiew Mun & Thiam, Hui San & Cai, Zuansi & Chong, Wen Tong & Pambudi, Nugroho Agung & King, Yeong Jin, 2018. "Novel thermal management system using mist cooling for lithium-ion battery packs," Applied Energy, Elsevier, vol. 223(C), pages 146-158.
    9. Gang Zhao & Xiaolin Wang & Michael Negnevitsky & Hengyun Zhang & Chengjiang Li, 2022. "Performance Improvement of a Novel Trapezoid Air-Cooling Battery Thermal Management System for Electric Vehicles," Sustainability, MDPI, vol. 14(9), pages 1-21, April.
    10. Fu, Jianqin & Li, Hao & Sun, Xilei & He, Tingpu & Zhang, Guanjie & Wei, Changhe, 2025. "Multi-physics simulation modeling and energy flow characterization of thermal management system for a sport utility vehicle under high-temperature conditions," Energy, Elsevier, vol. 316(C).
    11. Yang, Huizhu & Li, Mingxuan & Wang, Zehui & Ma, Binjian, 2023. "A compact and lightweight hybrid liquid cooling system coupling with Z-type cold plates and PCM composite for battery thermal management," Energy, Elsevier, vol. 263(PE).
    12. Wu, Yue & Huang, Zhiwu & Li, Dongjun & Li, Heng & Peng, Jun & Stroe, Daniel & Song, Ziyou, 2024. "Optimal battery thermal management for electric vehicles with battery degradation minimization," Applied Energy, Elsevier, vol. 353(PA).
    13. Shen, Zu-Guo & Chen, Shuai & Liu, Xun & Chen, Ben, 2021. "A review on thermal management performance enhancement of phase change materials for vehicle lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    14. Ma, Yan & Ma, Qian & Liu, Yongqin & Gao, Jinwu & Chen, Hong, 2024. "Two-level optimization strategy for vehicle speed and battery thermal management in connected and automated EVs," Applied Energy, Elsevier, vol. 361(C).
    15. Wu, Nan & Ye, Xiaolin & Li, Junjie & Lin, Boshen & Zhou, Xuelong & Yu, Bin, 2021. "Passive thermal management systems employing hydrogel for the large-format lithium-ion cell: A systematic study," Energy, Elsevier, vol. 231(C).
    16. Zhang, Xiaoqing & Ma, Xiao & Zhang, Zhaohuan & Du, Haoyu & Wu, Zhixuan & Li, Zhe & Shuai, Shijin, 2025. "Review and analysis of thermal management for proton exchange membrane fuel cell hybrid power system," Renewable Energy, Elsevier, vol. 244(C).
    17. Liang Xu & Shanyi Wang & Lei Xi & Yunlong Li & Jianmin Gao, 2024. "A Review of Thermal Management and Heat Transfer of Lithium-Ion Batteries," Energies, MDPI, vol. 17(16), pages 1-36, August.
    18. Giorgio Previati & Giampiero Mastinu & Massimiliano Gobbi, 2022. "Thermal Management of Electrified Vehicles—A Review," Energies, MDPI, vol. 15(4), pages 1-29, February.
    19. Markus S. Wahl & Lena Spitthoff & Harald I. Muri & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "The Importance of Optical Fibres for Internal Temperature Sensing in Lithium-ion Batteries during Operation," Energies, MDPI, vol. 14(12), pages 1-17, June.
    20. Liu, Huan-ling & Shi, Hang-bo & Shen, Han & Xie, Gongnan, 2019. "The performance management of a Li-ion battery by using tree-like mini-channel heat sinks: Experimental and numerical optimization," Energy, Elsevier, vol. 189(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:17:p:4451-:d:1471813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.