IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i16p4046-d1456680.html
   My bibliography  Save this article

Hydrodynamic Performance of a Dual-Pontoon WEC-Breakwater System: An Analysis of Wave Energy Content and Converter Efficiency

Author

Listed:
  • Haoyu Ding

    (Department of Architecture & Civil Engineering, University of Bath, Bath BA2 7AY, UK)

Abstract

A dual-pontoon WEC-breakwater system is proposed to optimise space utilisation and reduce construction costs by integrating wave energy converters (WECs) with breakwaters. Previous parametric studies on the dimensions and layout of WECs have primarily used potential flow theories, often neglecting the viscous effects in wave–pontoon interactions. In this research, I employ a fully nonlinear viscous model, OpenFOAM ® , to address these limitations. I examine multiple parameters, including the gap width between the pontoons, the draft, and the structure breadth, to assess their impact on the functional performance of this hybrid system. Furthermore, I discuss the accurate hydrodynamic performance of waves interacting with multiple floating structures and explore how various parameters influence the dual-pontoon WEC-breakwater integrated system’s functionality. I discuss a novel analysis of the effective frequency bandwidth, considering both wave energy conversion efficiency and wave attenuation efficiency, to reflect the overall performance of the integrated system. This paper investigates wave–structure interactions and suggests optimisation strategies for the WEC-breakwater integrated system.

Suggested Citation

  • Haoyu Ding, 2024. "Hydrodynamic Performance of a Dual-Pontoon WEC-Breakwater System: An Analysis of Wave Energy Content and Converter Efficiency," Energies, MDPI, vol. 17(16), pages 1-19, August.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4046-:d:1456680
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/16/4046/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/16/4046/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    2. Zhou, Binzhen & Huang, Xu & Lin, Chusen & Zhang, Hengming & Peng, Jiaxin & Nie, Zuli & Jin, Peng, 2024. "Experimental study of a WEC array-floating breakwater hybrid system in multiple-degree-of-freedom motion," Applied Energy, Elsevier, vol. 371(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    2. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    3. Peng, Wei & Zhang, Yingnan & Zou, Qingping & Zhang, Jisheng & Li, Haoran, 2024. "Effect of varying PTO on a triple floater wave energy converter-breakwater hybrid system: An experimental study," Renewable Energy, Elsevier, vol. 224(C).
    4. George Lavidas & Francesco De Leo & Giovanni Besio, 2020. "Blue Growth Development in the Mediterranean Sea: Quantifying the Benefits of an Integrated Wave Energy Converter at Genoa Harbour," Energies, MDPI, vol. 13(16), pages 1-14, August.
    5. Galván-Pozos, D.E. & Sergiienko, N.Y. & García-Nava, H. & Ocampo-Torres, F.J. & Osuna-Cañedo, J.P., 2024. "Numerical analysis of the energy capture performance of a six-leg wave energy converter under Mexican waters wave conditions," Renewable Energy, Elsevier, vol. 228(C).
    6. Craig Jones & Grace Chang & Kaustubha Raghukumar & Samuel McWilliams & Ann Dallman & Jesse Roberts, 2018. "Spatial Environmental Assessment Tool (SEAT): A Modeling Tool to Evaluate Potential Environmental Risks Associated with Wave Energy Converter Deployments," Energies, MDPI, vol. 11(8), pages 1-19, August.
    7. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    8. Carrelhas, A.A.D. & Gato, L.M.C. & Morais, F.J.F., 2024. "Aerodynamic performance and noise emission of different geometries of Wells turbines under design and off-design conditions," Renewable Energy, Elsevier, vol. 220(C).
    9. Manuel Corrales-Gonzalez & George Lavidas & Giovanni Besio, 2023. "Feasibility of Wave Energy Harvesting in the Ligurian Sea, Italy," Sustainability, MDPI, vol. 15(11), pages 1-22, June.
    10. Cheng, Zhengshun & Wen, Ting Rui & Ong, Muk Chen & Wang, Kai, 2019. "Power performance and dynamic responses of a combined floating vertical axis wind turbine and wave energy converter concept," Energy, Elsevier, vol. 171(C), pages 190-204.
    11. Penalba, Markel & Ulazia, Alain & Ibarra-Berastegui, Gabriel & Ringwood, John & Sáenz, Jon, 2018. "Wave energy resource variation off the west coast of Ireland and its impact on realistic wave energy converters’ power absorption," Applied Energy, Elsevier, vol. 224(C), pages 205-219.
    12. Siegel, Stefan G., 2019. "Numerical benchmarking study of a Cycloidal Wave Energy Converter," Renewable Energy, Elsevier, vol. 134(C), pages 390-405.
    13. Majidi, Ajab Gul & Ramos, Victor & Rosa-Santos, Paulo & das Neves, Luciana & Taveira-Pinto, Francisco, 2025. "Power production assessment of wave energy converters in mainland Portugal," Renewable Energy, Elsevier, vol. 243(C).
    14. Ponce de León, Sonia & Restano, Marco & Benveniste, Jérôme, 2024. "“Assessing the wave power density in the Atlantic French façade from high-resolution CryoSat-2 SAR altimetry data”," Energy, Elsevier, vol. 302(C).
    15. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    16. Gao, Qiang & Khan, Salman Saeed & Sergiienko, Nataliia & Ertugrul, Nesimi & Hemer, Mark & Negnevitsky, Michael & Ding, Boyin, 2022. "Assessment of wind and wave power characteristic and potential for hybrid exploration in Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    18. deCastro, M. & Rusu, L. & Arguilé-Pérez, B. & Ribeiro, A. & Costoya, X. & Carvalho, D. & Gómez-Gesteira, M., 2024. "Different approaches to analyze the impact of future climate change on the exploitation of wave energy," Renewable Energy, Elsevier, vol. 220(C).
    19. Sang-Moon Yun & Hee-Sung Shin & Jong-Chun Park, 2024. "Two-Way Coupling Simulation of Fluid-Multibody Dynamics for Estimating Power Generation Performance of Point Absorber Wave Energy Converters," Energies, MDPI, vol. 17(4), pages 1-26, February.
    20. Roy, Sanjoy, 2024. "Standard log-capture differentials as performance metrics for deepwater wave power generation," Energy, Elsevier, vol. 299(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:16:p:4046-:d:1456680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.