IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v144y2018icp120-128.html
   My bibliography  Save this article

Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation

Author

Listed:
  • Wang, Yingguang
  • Wang, Lifu

Abstract

This paper focuses on realistically predicting the power outputs of wave energy converters operating in shallow water nonlinear waves. An oscillating surge wave energy converter (OSWEC) is utilized as a specific calculation example, and the generated power of the OSWEC has been predicted by using a new method (a nonlinear simulation method) that incorporates a second order random wave model into a nonlinear dynamic filter. It is demonstrated that the second order random wave model in this article can be utilized to generate irregular waves with realistic crest-trough asymmetries, and when used in combination with the nonlinear filter can produce more accurate power output predictions. The research findings demonstrate that the new nonlinear simulation method in this article can be utilized as a robust tool for ocean engineers in their design, analysis and optimization of wave energy converters.

Suggested Citation

  • Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
  • Handle: RePEc:eee:energy:v:144:y:2018:i:c:p:120-128
    DOI: 10.1016/j.energy.2017.12.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054421732042X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tri, Nguyen Minh & Truong, Dinh Quang & Thinh, Do Hoang & Binh, Phan Cong & Dung, Dang Tri & Lee, Seyoung & Park, Hyung Gyu & Ahn, Kyoung Kwan, 2016. "A novel control method to maximize the energy-harvesting capability of an adjustable slope angle wave energy converter," Renewable Energy, Elsevier, vol. 97(C), pages 518-531.
    2. Bozzi, Silvia & Giassi, Marianna & Moreno Miquel, Adrià & Antonini, Alessandro & Bizzozero, Federica & Gruosso, Giambattista & Archetti, Renata & Passoni, Giuseppe, 2017. "Wave energy farm design in real wave climates: the Italian offshore," Energy, Elsevier, vol. 122(C), pages 378-389.
    3. Babarit, A., 2015. "A database of capture width ratio of wave energy converters," Renewable Energy, Elsevier, vol. 80(C), pages 610-628.
    4. Babarit, A. & Hals, J. & Muliawan, M.J. & Kurniawan, A. & Moan, T. & Krokstad, J., 2012. "Numerical benchmarking study of a selection of wave energy converters," Renewable Energy, Elsevier, vol. 41(C), pages 44-63.
    5. Henriques, J.C.C. & Gato, L.M.C. & Falcão, A.F.O. & Robles, E. & Faÿ, F.-X., 2016. "Latching control of a floating oscillating-water-column wave energy converter," Renewable Energy, Elsevier, vol. 90(C), pages 229-241.
    6. Rezanejad, K. & Guedes Soares, C. & López, I. & Carballo, R., 2017. "Experimental and numerical investigation of the hydrodynamic performance of an oscillating water column wave energy converter," Renewable Energy, Elsevier, vol. 106(C), pages 1-16.
    7. Robertson, Bryson & Bailey, Helen & Clancy, Dan & Ortiz, Juan & Buckham, Bradley, 2016. "Influence of wave resource assessment methodology on wave energy production estimates," Renewable Energy, Elsevier, vol. 86(C), pages 1145-1160.
    8. Son, Daewoong & Yeung, Ronald W., 2017. "Optimizing ocean-wave energy extraction of a dual coaxial-cylinder WEC using nonlinear model predictive control," Applied Energy, Elsevier, vol. 187(C), pages 746-757.
    9. de Andres, A. & Guanche, R. & Vidal, C. & Losada, I.J., 2015. "Adaptability of a generic wave energy converter to different climate conditions," Renewable Energy, Elsevier, vol. 78(C), pages 322-333.
    10. Liguo Wang & Jan Isberg, 2015. "Nonlinear Passive Control of a Wave Energy Converter Subject to Constraints in Irregular Waves," Energies, MDPI, vol. 8(7), pages 1-15, June.
    11. Mitchell Ferguson, Tom & Penesis, Irene & Macfarlane, Gregor & Fleming, Alan, 2017. "A PIV investigation of OWC operation in regular, polychromatic and irregular waves," Renewable Energy, Elsevier, vol. 103(C), pages 143-155.
    12. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    13. Cargo, C.J. & Hillis, A.J. & Plummer, A.R., 2016. "Strategies for active tuning of Wave Energy Converter hydraulic power take-off mechanisms," Renewable Energy, Elsevier, vol. 94(C), pages 32-47.
    14. Cherubini, Antonello & Vertechy, Rocco & Fontana, Marco, 2016. "Simplified model of offshore Airborne Wind Energy Converters," Renewable Energy, Elsevier, vol. 88(C), pages 465-473.
    15. Gunn, Kester & Stock-Williams, Clym, 2012. "Quantifying the global wave power resource," Renewable Energy, Elsevier, vol. 44(C), pages 296-304.
    16. Sudath Prasanna Gunawardane & Chathura Jayan Kankanamge & Tomiji Watabe, 2016. "Study on the Performance of the “Pendulor” Wave Energy Converter in an Array Configuration," Energies, MDPI, vol. 9(4), pages 1-26, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Neshat, Mehdi & Nezhad, Meysam Majidi & Sergiienko, Nataliia Y. & Mirjalili, Seyedali & Piras, Giuseppe & Garcia, Davide Astiaso, 2022. "Wave power forecasting using an effective decomposition-based convolutional Bi-directional model with equilibrium Nelder-Mead optimiser," Energy, Elsevier, vol. 256(C).
    2. Hao Tian & Zijian Zhou & Yu Sui, 2019. "Modeling and Validation of an Electrohydraulic Power Take-Off System for a Portable Wave Energy Convertor with Compressed Energy Storage," Energies, MDPI, vol. 12(17), pages 1-15, September.
    3. Wang, Yingguang, 2020. "Predicting absorbed power of a wave energy converter in a nonlinear mixed sea," Renewable Energy, Elsevier, vol. 153(C), pages 362-374.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    2. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.
    3. Choupin, O. & Pinheiro Andutta, F. & Etemad-Shahidi, A. & Tomlinson, R., 2021. "A decision-making process for wave energy converter and location pairing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Robertson, Bryson & Bailey, Helen & Leary, Matthew & Buckham, Bradley, 2021. "A methodology for architecture agnostic and time flexible representations of wave energy converter performance," Applied Energy, Elsevier, vol. 287(C).
    5. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    6. Burgaç, Alper & Yavuz, Hakan, 2019. "Fuzzy Logic based hybrid type control implementation of a heaving wave energy converter," Energy, Elsevier, vol. 170(C), pages 1202-1214.
    7. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    8. Choupin, O. & Têtu, A. & Del Río-Gamero, B. & Ferri, F. & Kofoed, JP., 2022. "Premises for an annual energy production and capacity factor improvement towards a few optimised wave energy converters configurations and resources pairs," Applied Energy, Elsevier, vol. 312(C).
    9. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    10. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    11. Lavidas, George, 2020. "Selection index for Wave Energy Deployments (SIWED): A near-deterministic index for wave energy converters," Energy, Elsevier, vol. 196(C).
    12. Fairley, Iain & Lewis, Matthew & Robertson, Bryson & Hemer, Mark & Masters, Ian & Horrillo-Caraballo, Jose & Karunarathna, Harshinie & Reeve, Dominic E., 2020. "A classification system for global wave energy resources based on multivariate clustering," Applied Energy, Elsevier, vol. 262(C).
    13. Lorenzo Ciappi & Lapo Cheli & Irene Simonetti & Alessandro Bianchini & Giampaolo Manfrida & Lorenzo Cappietti, 2020. "Wave-to-Wire Model of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean Energy Hot-Spots," Energies, MDPI, vol. 13(21), pages 1-28, October.
    14. Ni, Wenchi & Zhang, Xu & Zhang, Wei & Liang, Shuangling, 2021. "Numerical investigation of adaptive damping control for raft-type wave energy converters," Renewable Energy, Elsevier, vol. 175(C), pages 520-531.
    15. Mazzaretto, Ottavio Mattia & Lucero, Felipe & Besio, Giovanni & Cienfuegos, Rodrigo, 2020. "Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile," Renewable Energy, Elsevier, vol. 159(C), pages 494-505.
    16. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).
    17. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    18. Li, Qiaofeng & Mi, Jia & Li, Xiaofan & Chen, Shuo & Jiang, Boxi & Zuo, Lei, 2021. "A self-floating oscillating surge wave energy converter," Energy, Elsevier, vol. 230(C).
    19. Carballo, R. & Arean, N. & Álvarez, M. & López, I. & Castro, A. & López, M. & Iglesias, G., 2019. "Wave farm planning through high-resolution resource and performance characterization," Renewable Energy, Elsevier, vol. 135(C), pages 1097-1107.
    20. Faÿ, François-Xavier & Robles, Eider & Marcos, Marga & Aldaiturriaga, Endika & Camacho, Eduardo F., 2020. "Sea trial results of a predictive algorithm at the Mutriku Wave power plant and controllers assessment based on a detailed plant model," Renewable Energy, Elsevier, vol. 146(C), pages 1725-1745.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:144:y:2018:i:c:p:120-128. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.