IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v78y2015icp322-333.html
   My bibliography  Save this article

Adaptability of a generic wave energy converter to different climate conditions

Author

Listed:
  • de Andres, A.
  • Guanche, R.
  • Vidal, C.
  • Losada, I.J.

Abstract

This study evaluates the influence of wave climate tunability on the performance of a generic Wave Energy Converter (WEC) for different climate scenarios. The generic WEC is assumed to be composed of an array of heaving, floating cylinders. In this study, two natural periods for the cylinders of 4 s and 8 s (typical of enclosed seas and the mean Atlantic swell, respectively) and a location-tunable cylinder are considered to evaluate the influence of tuning on the power performance of the cylinder. The WEC power matrix is computed using a frequency domain model, and the performance of the WEC is evaluated along the global coasts; the met-ocean data originated from the global reanalysis database (GOW) from Reguero et al. (2012). The performance of the WEC is evaluated using two parameters: the capture width ratio (CWR), which evaluates the efficiency of the converter at each location, and the kW/Ton (KWT) parameter, which evaluates the efficiency of the converter using “economic” terms. Tuning a converter for each location displayed a positive CWR; however, the KWT was low after WEC tuning because of the weight of the structures required to tune the converter that experiences high peak periods.

Suggested Citation

  • de Andres, A. & Guanche, R. & Vidal, C. & Losada, I.J., 2015. "Adaptability of a generic wave energy converter to different climate conditions," Renewable Energy, Elsevier, vol. 78(C), pages 322-333.
  • Handle: RePEc:eee:renene:v:78:y:2015:i:c:p:322-333
    DOI: 10.1016/j.renene.2015.01.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115000270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.01.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goggins, Jamie & Finnegan, William, 2014. "Shape optimisation of floating wave energy converters for a specified wave energy spectrum," Renewable Energy, Elsevier, vol. 71(C), pages 208-220.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    2. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    3. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
    5. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    6. Robertson, Bryson & Bailey, Helen & Leary, Matthew & Buckham, Bradley, 2021. "A methodology for architecture agnostic and time flexible representations of wave energy converter performance," Applied Energy, Elsevier, vol. 287(C).
    7. Garcia-Teruel, Anna & Forehand, David I.M., 2022. "Manufacturability considerations in design optimisation of wave energy converters," Renewable Energy, Elsevier, vol. 187(C), pages 857-873.
    8. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    9. Li, Wenlong & Chau, K.T. & Lee, Christopher H.T. & Ching, T.W. & Chen, Mu & Jiang, J.Z., 2017. "A new linear magnetic gear with adjustable gear ratios and its application for direct-drive wave energy extraction," Renewable Energy, Elsevier, vol. 105(C), pages 199-208.
    10. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    11. Teixeira-Duarte, Felipe & Clemente, Daniel & Giannini, Gianmaria & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2022. "Review on layout optimization strategies of offshore parks for wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    12. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    13. Zhang, Yongxing & Zhao, Yongjie & Sun, Wei & Li, Jiaxuan, 2021. "Ocean wave energy converters: Technical principle, device realization, and performance evaluation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    14. Reguero, B.G. & Losada, I.J. & Méndez, F.J., 2015. "A global wave power resource and its seasonal, interannual and long-term variability," Applied Energy, Elsevier, vol. 148(C), pages 366-380.
    15. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    16. Marcos Blanco & Pablo Moreno-Torres & Marcos Lafoz & Dionisio Ramírez, 2015. "Design Parameters Analysis of Point Absorber WEC via an evolutionary-algorithm-based Dimensioning Tool," Energies, MDPI, vol. 8(10), pages 1-31, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    2. Wang, LiGuo & Ringwood, John V., 2021. "Control-informed ballast and geometric optimisation of a three-body hinge-barge wave energy converter using two-layer optimisation," Renewable Energy, Elsevier, vol. 171(C), pages 1159-1170.
    3. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    4. Tunde Aderinto & Hua Li, 2019. "Review on Power Performance and Efficiency of Wave Energy Converters," Energies, MDPI, vol. 12(22), pages 1-24, November.
    5. Raju Ahamed & Kristoffer McKee & Ian Howard, 2022. "A Review of the Linear Generator Type of Wave Energy Converters’ Power Take-Off Systems," Sustainability, MDPI, vol. 14(16), pages 1-42, August.
    6. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    7. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2019. "Enhancement of wave energy absorption efficiency via geometry and power take-off damping tuning," Energy, Elsevier, vol. 169(C), pages 819-832.
    8. Blažauskas, Nerijus & Pašilis, Aleksas & Knolis, Audrius, 2015. "Potential applications for small scale wave energy installations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 297-305.
    9. Shadman, Milad & Estefen, Segen F. & Rodriguez, Claudio A. & Nogueira, Izabel C.M., 2018. "A geometrical optimization method applied to a heaving point absorber wave energy converter," Renewable Energy, Elsevier, vol. 115(C), pages 533-546.
    10. Tunde Aderinto & Hua Li, 2020. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter," Energies, MDPI, vol. 13(8), pages 1-15, April.
    11. Zhang, Xiantao & Tian, XinLiang & Xiao, Longfei & Li, Xin & Lu, Wenyue, 2019. "Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter," Energy, Elsevier, vol. 188(C).
    12. Zhang, Xiantao & Tian, Xinliang & Xiao, Longfei & Li, Xin & Chen, Lifen, 2018. "Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter," Applied Energy, Elsevier, vol. 228(C), pages 450-467.
    13. Garcia-Teruel, Anna & Forehand, David I.M., 2022. "Manufacturability considerations in design optimisation of wave energy converters," Renewable Energy, Elsevier, vol. 187(C), pages 857-873.
    14. Ji Woo Nam & Yong Jun Sung & Seong Wook Cho, 2021. "Effective Mooring Rope Tension in Mechanical and Hydraulic Power Take-Off of Wave Energy Converter," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    15. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    16. Wang, Liguo & Isberg, Jan & Tedeschi, Elisabetta, 2018. "Review of control strategies for wave energy conversion systems and their validation: the wave-to-wire approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 366-379.
    17. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    18. Younesian, Davood & Alam, Mohammad-Reza, 2017. "Multi-stable mechanisms for high-efficiency and broadband ocean wave energy harvesting," Applied Energy, Elsevier, vol. 197(C), pages 292-302.
    19. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    20. Bechlenberg, Alva & Wei, Yanji & Jayawardhana, Bayu & Vakis, Antonis I., 2023. "Analysing the influence of power take-off adaptability on the power extraction of dense wave energy converter arrays," Renewable Energy, Elsevier, vol. 211(C), pages 1-12.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:78:y:2015:i:c:p:322-333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.