IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v246y2022ics036054422200336x.html
   My bibliography  Save this article

Wave energy converter optimization based on differential evolution algorithm

Author

Listed:
  • He, Zechen
  • Ning, Dezhi
  • Gou, Ying
  • Zhou, Zhimin

Abstract

A parameter optimization method for an oscillating buoy-type wave energy converter (WEC) is presented from the perspective of submerged buoy volume; which affects both the power production and cost investment. The effects of submerged buoy volume on the optimal power capture are studied using the differential evolution algorithm and linear potential flow theory. The cost indictor V/P (V and P representing submerged buoy volume and power capture, respectively) is introduced to measure the cost-effectiveness of the WECs. The power capture and cost performance of the optimized WECs in regular and irregular waves are discussed. The results show that the WEC with the large power take-off (PTO) damping has good adaptability to a range of wave frequencies; however, the optimal submerged buoy volume is not cost-efficient due to the consequent relatively large cost indicators. The best choice of WEC in terms of cost-effectiveness is one designed with a large PTO damping and a buoy of slightly small non-optimal submerged volume.

Suggested Citation

  • He, Zechen & Ning, Dezhi & Gou, Ying & Zhou, Zhimin, 2022. "Wave energy converter optimization based on differential evolution algorithm," Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:energy:v:246:y:2022:i:c:s036054422200336x
    DOI: 10.1016/j.energy.2022.123433
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200336X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123433?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong-Wei Fang & Yu-Zhu Feng & Guo-Ping Li, 2018. "Optimization of Wave Energy Converter Arrays by an Improved Differential Evolution Algorithm," Energies, MDPI, vol. 11(12), pages 1-19, December.
    2. Berenjkoob, Mahdi Nazari & Ghiasi, Mahmoud & Soares, C.Guedes, 2021. "Influence of the shape of a buoy on the efficiency of its dual-motion wave energy conversion," Energy, Elsevier, vol. 214(C).
    3. Beels, Charlotte & Troch, Peter & Kofoed, Jens Peter & Frigaard, Peter & Vindahl Kringelum, Jon & Carsten Kromann, Peter & Heyman Donovan, Martin & De Rouck, Julien & De Backer, Griet, 2011. "A methodology for production and cost assessment of a farm of wave energy converters," Renewable Energy, Elsevier, vol. 36(12), pages 3402-3416.
    4. de Andres, A. & Guanche, R. & Vidal, C. & Losada, I.J., 2015. "Adaptability of a generic wave energy converter to different climate conditions," Renewable Energy, Elsevier, vol. 78(C), pages 322-333.
    5. Tunde Aderinto & Hua Li, 2020. "Conceptual Design and Simulation of a Self-Adjustable Heaving Point Absorber Based Wave Energy Converter," Energies, MDPI, vol. 13(8), pages 1-15, April.
    6. Garcia-Teruel, A. & Forehand, D.I.M., 2021. "A review of geometry optimisation of wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gong, Haoxiang & Cao, Feifei & Han, Zhi & Liu, Shangze & Shi, Hongda, 2022. "Study on the wave energy capture spectrum based on wave height take-off," Energy, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pasquale Contestabile & Enrico Di Lauro & Mariano Buccino & Diego Vicinanza, 2016. "Economic Assessment of Overtopping BReakwater for Energy Conversion (OBREC): A Case Study in Western Australia," Sustainability, MDPI, vol. 9(1), pages 1-28, December.
    2. Erfan Amini & Rojin Asadi & Danial Golbaz & Mahdieh Nasiri & Seyed Taghi Omid Naeeni & Meysam Majidi Nezhad & Giuseppe Piras & Mehdi Neshat, 2021. "Comparative Study of Oscillating Surge Wave Energy Converter Performance: A Case Study for Southern Coasts of the Caspian Sea," Sustainability, MDPI, vol. 13(19), pages 1-21, October.
    3. Tiesheng Liu & Yanjun Liu & Shuting Huang & Gang Xue, 2022. "Shape Optimization of Oscillating Buoy Wave Energy Converter Based on the Mean Annual Power Prediction Model," Energies, MDPI, vol. 15(20), pages 1-19, October.
    4. Teixeira-Duarte, Felipe & Clemente, Daniel & Giannini, Gianmaria & Rosa-Santos, Paulo & Taveira-Pinto, Francisco, 2022. "Review on layout optimization strategies of offshore parks for wave energy converters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
    6. Erfan Amini & Danial Golbaz & Fereidoun Amini & Meysam Majidi Nezhad & Mehdi Neshat & Davide Astiaso Garcia, 2020. "A Parametric Study of Wave Energy Converter Layouts in Real Wave Models," Energies, MDPI, vol. 13(22), pages 1-23, November.
    7. Mehdi Neshat & Nataliia Y. Sergiienko & Erfan Amini & Meysam Majidi Nezhad & Davide Astiaso Garcia & Bradley Alexander & Markus Wagner, 2020. "A New Bi-Level Optimisation Framework for Optimising a Multi-Mode Wave Energy Converter Design: A Case Study for the Marettimo Island, Mediterranean Sea," Energies, MDPI, vol. 13(20), pages 1-23, October.
    8. Adrian De Andres & Jéromine Maillet & Jørgen Hals Todalshaug & Patrik Möller & David Bould & Henry Jeffrey, 2016. "Techno-Economic Related Metrics for a Wave Energy Converters Feasibility Assessment," Sustainability, MDPI, vol. 8(11), pages 1-19, October.
    9. Xiaohui Zeng & Qi Wang & Yuanshun Kang & Fajun Yu, 2022. "A Novel Type of Wave Energy Converter with Five Degrees of Freedom and Preliminary Investigations on Power-Generating Capacity," Energies, MDPI, vol. 15(9), pages 1-20, April.
    10. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    11. Dalton, Gordon & Bardócz, Tamás & Blanch, Mike & Campbell, David & Johnson, Kate & Lawrence, Gareth & Lilas, Theodore & Friis-Madsen, Erik & Neumann, Frank & Nikitas, Nikitakos & Ortega, Saul Torres &, 2019. "Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 338-359.
    12. Giannini, Gianmaria & Rosa-Santos, Paulo & Ramos, Victor & Taveira-Pinto, Francisco, 2022. "Wave energy converters design combining hydrodynamic performance and structural assessment," Energy, Elsevier, vol. 249(C).
    13. Lavidas, George, 2019. "Energy and socio-economic benefits from the development of wave energy in Greece," Renewable Energy, Elsevier, vol. 132(C), pages 1290-1300.
    14. Gael Verao Fernandez & Philip Balitsky & Vasiliki Stratigaki & Peter Troch, 2018. "Coupling Methodology for Studying the Far Field Effects of Wave Energy Converter Arrays over a Varying Bathymetry," Energies, MDPI, vol. 11(11), pages 1-24, October.
    15. Lavidas, George & Venugopal, Vengatesan, 2017. "A 35 year high-resolution wave atlas for nearshore energy production and economics at the Aegean Sea," Renewable Energy, Elsevier, vol. 103(C), pages 401-417.
    16. Astariz, S. & Iglesias, G., 2015. "The economics of wave energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 397-408.
    17. Wang, Yingguang & Wang, Lifu, 2018. "Towards realistically predicting the power outputs of wave energy converters: Nonlinear simulation," Energy, Elsevier, vol. 144(C), pages 120-128.
    18. Pasquale Contestabile & Enrico Di Lauro & Paolo Galli & Cesare Corselli & Diego Vicinanza, 2017. "Offshore Wind and Wave Energy Assessment around Malè and Magoodhoo Island (Maldives)," Sustainability, MDPI, vol. 9(4), pages 1-24, April.
    19. Coe, Ryan G. & Bacelli, Giorgio & Forbush, Dominic, 2021. "A practical approach to wave energy modeling and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    20. Teillant, Boris & Costello, Ronan & Weber, Jochem & Ringwood, John, 2012. "Productivity and economic assessment of wave energy projects through operational simulations," Renewable Energy, Elsevier, vol. 48(C), pages 220-230.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:246:y:2022:i:c:s036054422200336x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.