IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i14p3530-d1437876.html
   My bibliography  Save this article

Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives

Author

Listed:
  • José Ramón Copa Rey

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Cecilia Mateos-Pedrero

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Andrei Longo

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Bruna Rijo

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Paulo Brito

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Paulo Ferreira

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

  • Catarina Nobre

    (VALORIZA—Research Centre for Endogenous Resource Valorization, Portalegre Polytechnic University, Campus Politécnico 10, 7300-555 Portalegre, Portugal)

Abstract

Hydrogen is undeniably one of the most promising options for producing energy with minimal environmental impact. However, current hydrogen production is still derived from carbon-intensive processes relying on fossil fuels. Biomass is a sustainable and versatile resource that can be converted into hydrogen through biological and thermochemical pathways from a large variety of feedstocks and technologies. This work reviews and compares existing biomass-to-hydrogen technologies, focusing on their characteristics, maturity level, benefits, limitations, and techno-economic and lifecycle environmental impacts. Less-developed biological conversion methods are characterized by low efficiencies and hydrogen productivity. More mature thermochemical routes enable higher efficiencies and hydrogen yields. Overall, while thermochemical processes suit centralized large-scale hydrogen production, biological pathways offer decentralized options, necessitating continued innovation for integration into future energy strategies. Some of these technologies, such as anaerobic digestion (best-case: 1.28 EUR/kgH 2 ) and conventional gasification (best-case: 1.79 EUR/kgH 2 ), emerge as promising, sustainable, and affordable alternatives for renewable hydrogen generation, offering production costs comparable to those of natural gas steam reforming (0.92–2.8 EUR/kgH 2 ).

Suggested Citation

  • José Ramón Copa Rey & Cecilia Mateos-Pedrero & Andrei Longo & Bruna Rijo & Paulo Brito & Paulo Ferreira & Catarina Nobre, 2024. "Renewable Hydrogen from Biomass: Technological Pathways and Economic Perspectives," Energies, MDPI, vol. 17(14), pages 1-36, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3530-:d:1437876
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/14/3530/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/14/3530/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hajizadeh, Abdollah & Mohamadi-Baghmolaei, Mohamad & Cata Saady, Noori M. & Zendehboudi, Sohrab, 2022. "Hydrogen production from biomass through integration of anaerobic digestion and biogas dry reforming," Applied Energy, Elsevier, vol. 309(C).
    2. Trchounian, Karen & Trchounian, Armen, 2015. "Hydrogen production from glycerol by Escherichia coli and other bacteria: An overview and perspectives," Applied Energy, Elsevier, vol. 156(C), pages 174-184.
    3. Al-Qahtani, Amjad & Parkinson, Brett & Hellgardt, Klaus & Shah, Nilay & Guillen-Gosalbez, Gonzalo, 2021. "Uncovering the true cost of hydrogen production routes using life cycle monetisation," Applied Energy, Elsevier, vol. 281(C).
    4. Gollakota, A.R.K. & Kishore, Nanda & Gu, Sai, 2018. "A review on hydrothermal liquefaction of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1378-1392.
    5. Nizamuddin, Sabzoi & Baloch, Humair Ahmed & Griffin, G.J. & Mubarak, N.M. & Bhutto, Abdul Waheed & Abro, Rashid & Mazari, Shaukat Ali & Ali, Brahim Si, 2017. "An overview of effect of process parameters on hydrothermal carbonization of biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1289-1299.
    6. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    7. Tomasz Kalak, 2023. "Potential Use of Industrial Biomass Waste as a Sustainable Energy Source in the Future," Energies, MDPI, vol. 16(4), pages 1-25, February.
    8. Byun, Jaewon & Han, Jee-hoon, 2023. "Economic feasible hydrogen production system from carbohydrate-rich food waste," Applied Energy, Elsevier, vol. 340(C).
    9. Hosseinzadeh, Ahmad & Zhou, John L. & Li, Xiaowei & Afsari, Morteza & Altaee, Ali, 2022. "Techno-economic and environmental impact assessment of hydrogen production processes using bio-waste as renewable energy resource," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    10. Janssen, Jacob L.L.C.C. & Weeda, Marcel & Detz, Remko J. & van der Zwaan, Bob, 2022. "Country-specific cost projections for renewable hydrogen production through off-grid electricity systems," Applied Energy, Elsevier, vol. 309(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antonio Picone & Maurizio Volpe & Antonio Messineo, 2021. "Process Water Recirculation during Hydrothermal Carbonization of Waste Biomass: Current Knowledge and Challenges," Energies, MDPI, vol. 14(10), pages 1-14, May.
    2. Kumar, R. & Strezov, V., 2021. "Thermochemical production of bio-oil: A review of downstream processing technologies for bio-oil upgrading, production of hydrogen and high value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Munir, M. Tajammal & Mansouri, Seyed Soheil & Udugama, Isuru A. & Baroutian, Saeid & Gernaey, Krist V. & Young, Brent R., 2018. "Resource recovery from organic solid waste using hydrothermal processing: Opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 64-75.
    4. Božidar Matin & Ivan Brandić & Ana Matin & Josip Ištvanić & Alan Antonović, 2024. "Possibilities of Liquefied Spruce ( Picea abies ) and Oak ( Quercus robur ) Biomass as an Environmentally Friendly Additive in Conventional Phenol–Formaldehyde Resin Wood Adhesives," Energies, MDPI, vol. 17(17), pages 1-18, September.
    5. Wądrzyk, Mariusz & Grzywacz, Przemysław & Janus, Rafał & Michalik, Marek, 2021. "A two-stage processing of cherry pomace via hydrothermal treatment followed by biochar gasification," Renewable Energy, Elsevier, vol. 179(C), pages 248-261.
    6. Mariusz Wądrzyk & Marek Plata & Kamila Zaborowska & Rafał Janus & Marek Lewandowski, 2021. "Py-GC-MS Study on Catalytic Pyrolysis of Biocrude Obtained via HTL of Fruit Pomace," Energies, MDPI, vol. 14(21), pages 1-16, November.
    7. Hongbo Du, & Deng, Fang & Kommalapati, Raghava R. & Amarasekara, Ananda S., 2020. "Iron based catalysts in biomass processing," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Ana Gonçalves & Jaime Filipe Puna & Luís Guerra & José Campos Rodrigues & João Fernando Gomes & Maria Teresa Santos & Diogo Alves, 2019. "Towards the Development of Syngas/Biomethane Electrolytic Production, Using Liquefied Biomass and Heterogeneous Catalyst," Energies, MDPI, vol. 12(19), pages 1-21, October.
    9. Li, Qingyin & Zhang, Shu & Wang, Yi & Xiang, Jun & Hu, Song & Yuan, Xiangzhou & Gholizadeh, Mortaza & Hu, Xun, 2021. "Ionic liquid coupled with nickel salt for enhancing the hydro-liquefaction efficiency of the major biomass components," Renewable Energy, Elsevier, vol. 175(C), pages 296-306.
    10. Seljak, T. & Buffi, M. & Valera-Medina, A. & Chong, C.T. & Chiaramonti, D. & Katrašnik, T., 2020. "Bioliquids and their use in power generation – A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    11. Mitchell Ubene & Mohammad Heidari & Animesh Dutta, 2022. "Computational Modeling Approaches of Hydrothermal Carbonization: A Critical Review," Energies, MDPI, vol. 15(6), pages 1-28, March.
    12. Andrea Dumančić & Nela Vlahinić Lenz & Lahorko Wagmann, 2024. "Profitability Model of Green Hydrogen Production on an Existing Wind Power Plant Location," Sustainability, MDPI, vol. 16(4), pages 1-23, February.
    13. Yang, Yuhan & Wang, Tiancheng & Hu, Hongyun & Yao, Dingding & Zou, Chan & Xu, Kai & Li, Xian & Yao, Hong, 2021. "Influence of partial components removal on pyrolysis behavior of lignocellulosic biowaste in molten salts," Renewable Energy, Elsevier, vol. 180(C), pages 616-625.
    14. Wang, Chao & Liao, Mingzheng & Liang, Bo & Jiang, Zhiqiang & Zhong, Weilin & Chen, Ying & Luo, Xianglong & Shu, Riyang & Tian, Zhipeng & Lei, Libin, 2021. "Enhancement effect of catalyst support on indirect hydrogen production from propane partial oxidation towards commercial solid oxide fuel cell (SOFC) applications," Applied Energy, Elsevier, vol. 288(C).
    15. Genel, Salih & Durak, Halil & Durak, Emre Demirer & Güneş, Hasret & Genel, Yaşar, 2023. "Hydrothermal liquefaction of biomass with molybdenum, aluminum, cobalt metal powder catalysts and evaluation of wastewater by fungus cultivation," Renewable Energy, Elsevier, vol. 203(C), pages 20-32.
    16. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    17. Primaz, Carmem T. & Ribes-Greus, Amparo & Jacques, Rosângela A., 2021. "Valorization of cotton residues for production of bio-oil and engineered biochar," Energy, Elsevier, vol. 235(C).
    18. Ye, Lian & Zhang, Jianliang & Wang, Guangwei & Wang, Chen & Mao, Xiaoming & Ning, Xiaojun & Zhang, Nan & Teng, Haipeng & Li, Jinhua & Wang, Chuan, 2023. "Feasibility analysis of plastic and biomass hydrochar for blast furnace injection," Energy, Elsevier, vol. 263(PD).
    19. Carlos T. Hiranobe & Andressa S. Gomes & Fábio F. G. Paiva & Gabrieli R. Tolosa & Leonardo L. Paim & Guilherme Dognani & Guilherme P. Cardim & Henrique P. Cardim & Renivaldo J. dos Santos & Flávio C. , 2024. "Sugarcane Bagasse: Challenges and Opportunities for Waste Recycling," Clean Technol., MDPI, vol. 6(2), pages 1-38, June.
    20. Mei Yin Ong & Nor-Insyirah Syahira Abdul Latif & Hui Yi Leong & Bello Salman & Pau Loke Show & Saifuddin Nomanbhay, 2019. "Characterization and Analysis of Malaysian Macroalgae Biomass as Potential Feedstock for Bio-Oil Production," Energies, MDPI, vol. 12(18), pages 1-14, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:14:p:3530-:d:1437876. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.