IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i13p3231-d1426734.html
   My bibliography  Save this article

Experimental Study on the Performance of an Air Conditioning Unit with a Baffled Indirect Evaporative Cooler

Author

Listed:
  • Seong-Bhin Kim

    (Graduate School of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan 48513, Republic of Korea)

  • Kwang-Am Moon

    (Graduate School of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan 48513, Republic of Korea)

  • Hwi-Ung Choi

    (Department of Refrigeration and Air-Conditioning Engineering, Chonnam National University, Yeosu 59626, Republic of Korea)

  • Kwang-Hwan Choi

    (Department of Refrigeration and Air-Conditioning Engineering, Pukyong National University, Busan 48513, Republic of Korea)

Abstract

Indirect evaporative coolers (IECs) use the latent heat of water evaporation to cool air. This system has the advantage of operating at low power without a compressor and does not increase the absolute humidity of the air. However, an IEC is difficult to use on its own because its cooling capacity is limited by the theoretical constraint of the wet-bulb temperature of the ambient air. Therefore, an air conditioning unit (ACU) was integrated with an IEC and experimentally evaluated in this study. The dry and wet channels of the IEC were integrated with an ACU evaporator and a condenser, unlike previous studies where IECs were integrated solely with either an evaporator or a condenser. This reduced the cooling load on the evaporator and helped the condenser to dissipate heat to improve the performance of the existing ACU. In addition, the IEC was equipped with baffles to improve its performance. To assess the extent of the performance improvement due to integration with the IEC, comparisons were also performed under the same experimental conditions with an ACU only. The results showed that under conditions with an indoor temperature of 32 °C, integrating the IEC with the ACU increased the average cooling capacity by 13.1% and decreased the average power consumption by 8.60% during the test period, compared to using only the ACU. Consequently, the average coefficient of performance (COP) increased by 19.5% compared to using only the ACU under the same conditions.

Suggested Citation

  • Seong-Bhin Kim & Kwang-Am Moon & Hwi-Ung Choi & Kwang-Hwan Choi, 2024. "Experimental Study on the Performance of an Air Conditioning Unit with a Baffled Indirect Evaporative Cooler," Energies, MDPI, vol. 17(13), pages 1-13, July.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3231-:d:1426734
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/13/3231/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/13/3231/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xu, Peng & Ma, Xiaoli & Zhao, Xudong & Fancey, Kevin, 2017. "Experimental investigation of a super performance dew point air cooler," Applied Energy, Elsevier, vol. 203(C), pages 761-777.
    2. Chen, Yi & Yang, Hongxing & Luo, Yimo, 2017. "Parameter sensitivity analysis and configuration optimization of indirect evaporative cooler (IEC) considering condensation," Applied Energy, Elsevier, vol. 194(C), pages 440-453.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Xamán, J. & Bassam, A., 2018. "An innovative air saturator for humidification-dehumidification desalination application," Applied Energy, Elsevier, vol. 228(C), pages 789-807.
    2. Oh, Seung Jin & Shahzad, Muhammad Wakil & Burhan, Muhammad & Chun, Wongee & Kian Jon, Chua & KumJa, M. & Ng, Kim Choon, 2019. "Approaches to energy efficiency in air conditioning: A comparative study on purge configurations for indirect evaporative cooling," Energy, Elsevier, vol. 168(C), pages 505-515.
    3. Pandelidis, Demis & Cichoń, Aleksandra & Pacak, Anna & Anisimov, Sergey & Drąg, Paweł, 2018. "Counter-flow indirect evaporative cooler for heat recovery in the temperate climate," Energy, Elsevier, vol. 165(PA), pages 877-894.
    4. Łukasz Stefaniak & Juliusz Walaszczyk & Michał Karpuk & Krzysztof Rajski & Jan Danielewicz, 2025. "The Possibility of Intermittent Water Spray Implementation in a Non-Porous Indirect Evaporative Cooler," Energies, MDPI, vol. 18(4), pages 1-17, February.
    5. Rasikh Tariq & Changhong Zhan & Nadeem Ahmed Sheikh & Xudong Zhao, 2018. "Thermal Performance Enhancement of a Cross-Flow-Type Maisotsenko Heat and Mass Exchanger Using Various Nanofluids," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Łukasz Stefaniak & Agnieszka Grabka & Juliusz Walaszczyk & Krzysztof Rajski & Jan Danielewicz & Wiktoria Jaskóła & Maja Wochniak & Weronika Żyta, 2025. "Enhancing Dewpoint Indirect Evaporative Cooling with Intermittent Water Spraying and Advanced Materials: A Review," Energies, MDPI, vol. 18(9), pages 1-24, April.
    7. Lim, Dae Kyu & Ahn, Byoung Ha & Jeong, Ji Hwan, 2018. "Method to control an air conditioner by directly measuring the relative humidity of indoor air to improve the comfort and energy efficiency," Applied Energy, Elsevier, vol. 215(C), pages 290-299.
    8. Min, Yunran & Chen, Yi & Shi, Wenchao & Yang, Hongxing, 2021. "Applicability of indirect evaporative cooler for energy recovery in hot and humid areas: Comparison with heat recovery wheel," Applied Energy, Elsevier, vol. 287(C).
    9. Zhu, Guangya & Wen, Tao & Wang, Qunwei & Xu, Xiaoyu, 2022. "A review of dew-point evaporative cooling: Recent advances and future development," Applied Energy, Elsevier, vol. 312(C).
    10. Ali Badiei & Eric Jadowski & Saba Sadati & Arash Beizaee & Jing Li & Leila Khajenoori & Hamid Reza Nasriani & Guiqiang Li & Xin Xiao, 2023. "The Energy-Saving Potential of Air-Side Economisers in Modular Data Centres: Analysis of Opportunities and Risks in Different Climates," Sustainability, MDPI, vol. 15(14), pages 1-22, July.
    11. Ma, Xiaoli & Zhao, Xudong & Zhang, Yufeng & Liu, Kaixin & Yang, Hui & Li, Jing & Akhlaghi, Yousef Golizadeh & Liu, Haowen & Han, Zhonghe & Liu, Zhijian, 2022. "Combined Rankine Cycle and dew point cooler for energy efficient power generation of the power plants - A review and perspective study," Energy, Elsevier, vol. 238(PA).
    12. Tariq, Rasikh & Sheikh, Nadeem Ahmed & Livas-García, A. & Xamán, J. & Bassam, A. & Maisotsenko, Valeriy, 2021. "Projecting global water footprints diminution of a dew-point cooling system: Sustainability approach assisted with energetic and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    13. Sadighi Dizaji, Hamed & Hu, Eric Jing & Chen, Lei & Pourhedayat, Samira, 2018. "Development and validation of an analytical model for perforated (multi-stage) regenerative M-cycle air cooler," Applied Energy, Elsevier, vol. 228(C), pages 2176-2194.
    14. Chu, Junjie & Xu, Wei & Huang, Xiang & Geng, Zhichao & Xuan, Jingwen, 2022. "Study on optimization of indirect-direct evaporative chiller for producing cold water in hot and dry areas," Renewable Energy, Elsevier, vol. 181(C), pages 898-913.
    15. Wang, Jue & Lu, Jun & Li, Wuyan & Zeng, Cheng & Shi, Fenghao, 2022. "Numerical study on performance of a hybrid indirect evaporative cooling heat recovery heat pump ventilator as applied in different climatic regions of China," Energy, Elsevier, vol. 239(PE).
    16. Ma, Xiaoli & Zeng, Cheng & Zhu, Zishang & Zhao, Xudong & Xiao, Xin & Akhlaghi, Yousef Golizadeh & Shittu, Samson, 2023. "Real life test of a novel super performance dew point cooling system in operational live data centre," Applied Energy, Elsevier, vol. 348(C).
    17. Chen, Yi & Yan, Huaxia & Luo, Yimo & Yang, Hongxing, 2019. "A proportional–integral (PI) law based variable speed technology for temperature control in indirect evaporative cooling system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Chen, Yi & Yan, Huaxia & Yang, Hongxing, 2018. "Comparative study of on-off control and novel high-low control of regenerative indirect evaporative cooler (RIEC)," Applied Energy, Elsevier, vol. 225(C), pages 233-243.
    19. Qian Chen & Muhammad Burhan & M Kum Ja & Muhammad Wakil Shahzad & Doskhan Ybyraiymkul & Hongfei Zheng & Xin Cui & Kim Choon Ng, 2022. "Hybrid Indirect Evaporative Cooling-Mechanical Vapor Compression System: A Mini-Review," Energies, MDPI, vol. 15(20), pages 1-17, October.
    20. Lin, Jie & Bui, Duc Thuan & Wang, Ruzhu & Chua, Kian Jon, 2018. "On the fundamental heat and mass transfer analysis of the counter-flow dew point evaporative cooler," Applied Energy, Elsevier, vol. 217(C), pages 126-142.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3231-:d:1426734. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.