Artificial Neural Networks as a Tool to Understand Complex Energy Poverty Relationships: The Case of Greece
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Roberts, Deborah & Vera-Toscano, Esperanza & Phimister, Euan, 2015. "Energy poverty in the UK: Is there a difference between rural and urban areas?," 89th Annual Conference, April 13-15, 2015, Warwick University, Coventry, UK 204213, Agricultural Economics Society.
- Papada, Lefkothea & Kaliampakos, Dimitris, 2016. "Developing the energy profile of mountainous areas," Energy, Elsevier, vol. 107(C), pages 205-214.
- Abbas, Khizar & Butt, Khalid Manzoor & Xu, Deyi & Ali, Muhammad & Baz, Khan & Kharl, Sanwal Hussain & Ahmed, Mansoor, 2022. "Measurements and determinants of extreme multidimensional energy poverty using machine learning," Energy, Elsevier, vol. 251(C).
- Milena N Rajić & Miroslav B Milovanović & Dragan S Antić & Rado M Maksimović & Pedja M Milosavljević & Dragan Lj Pavlović, 2020. "Analyzing energy poverty using intelligent approach," Energy & Environment, , vol. 31(8), pages 1448-1472, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elpida Kalfountzou & Lefkothea Papada & Christos Tourkolias & Sevastianos Mirasgedis & Dimitris Kaliampakos & Dimitris Damigos, 2025. "A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction," Energies, MDPI, vol. 18(5), pages 1-20, February.
- Urszula Grzybowska & Agnieszka Wojewódzka-Wiewiórska & Gintarė Vaznonienė & Hanna Dudek, 2024. "Households Vulnerable to Energy Poverty in the Visegrad Group Countries: An Analysis of Socio-Economic Factors Using a Machine Learning Approach," Energies, MDPI, vol. 17(24), pages 1-23, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Huang, Yatao & Jiao, Wenxian & Wang, Kang & Li, Erling & Yan, Yutong & Chen, Jingyang & Guo, Xuanxuan, 2022. "Examining the multidimensional energy poverty trap and its determinants: An empirical analysis at household and community levels in six provinces of China," Energy Policy, Elsevier, vol. 169(C).
- Balkissoon, Sarah & Fox, Neil & Lupo, Anthony & Haupt, Sue Ellen & Penny, Stephen G. & Miller, Steve J. & Beetstra, Margaret & Sykuta, Michael & Ohler, Adrienne, 2024. "Forecasting energy poverty using different machine learning techniques for Missouri," Energy, Elsevier, vol. 313(C).
- Hache, Emmanuel & Leboullenger, Déborah & Mignon, Valérie, 2017.
"Beyond average energy consumption in the French residential housing market: A household classification approach,"
Energy Policy, Elsevier, vol. 107(C), pages 82-95.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386095, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-02475511, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01386101, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2017. "Beyond average energy consumption in the French residential housing market: A household classification approach," Post-Print hal-01586597, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," Working Papers hal-04141605, HAL.
- Emmanuel Hache & Déborah Leboullenger & Valérie Mignon, 2016. "Beyond average energy consumption in the French residential housing market: A household classification approach," EconomiX Working Papers 2016-6, University of Paris Nanterre, EconomiX.
- Rodriguez-Alvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021.
"Alleviating energy poverty in Europe: Front-runners and laggards,"
Energy Economics, Elsevier, vol. 103(C).
- Rodríguez-Álvarez, Ana & Llorca, Manuel & Jamasb, Tooraj, 2021. "Alleviating Energy Poverty in Europe: Front-runners and Laggards," Working Papers 12-2021, Copenhagen Business School, Department of Economics.
- Łukasz Mamica & Jakub Głowacki & Kamil Makieła, 2021. "Determinants of the Energy Poverty of Polish Students during the COVID-19 Pandemic," Energies, MDPI, vol. 14(11), pages 1-15, June.
- Semple, Torran & Rodrigues, Lucelia & Harvey, John & Figueredo, Grazziela & Nica-Avram, Georgiana & Gillott, Mark & Milligan, Gregor & Goulding, James, 2024. "An empirical critique of the low income low energy efficiency approach to measuring fuel poverty," Energy Policy, Elsevier, vol. 186(C).
- Fateh Belaid, 2020.
"Fuel Poverty Exposure and Drivers: A Comparison of Vulnerability Landscape between Egypt and Jordan,"
Working Papers
1392, Economic Research Forum, revised 20 Apr 2020.
- Fateh Belaid, 2020. "Fuel Poverty Exposure and Drivers: A Comparison of Vulnerability Landscape Between Egypt and Jordan," LIS Working papers 789, LIS Cross-National Data Center in Luxembourg.
- Belaïd, Fateh, 2022.
"Mapping and understanding the drivers of fuel poverty in emerging economies: The case of Egypt and Jordan,"
Energy Policy, Elsevier, vol. 162(C).
- Fateh Belaïd, 2022. "Mapping and understanding the drivers of fuel poverty in emerging economies: The case of Egypt and Jordan," Post-Print hal-04542365, HAL.
- Kahouli, Sondès & Okushima, Shinichiro, 2021. "Regional energy poverty reevaluated: A direct measurement approach applied to France and Japan," Energy Economics, Elsevier, vol. 102(C).
- Ren, Zhiyuan & Zhu, Yuhan & Jin, Canyang & Xu, Aiting, 2023. "Social capital and energy poverty: Empirical evidence from China," Energy, Elsevier, vol. 267(C).
- Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
- Yuxiang Xie & E. Xie, 2023. "Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
- Elpida Kalfountzou & Lefkothea Papada & Christos Tourkolias & Sevastianos Mirasgedis & Dimitris Kaliampakos & Dimitris Damigos, 2025. "A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction," Energies, MDPI, vol. 18(5), pages 1-20, February.
- Zorana Zoran Stanković & Milena Nebojsa Rajic & Zorana Božić & Peđa Milosavljević & Ancuța Păcurar & Cristina Borzan & Răzvan Păcurar & Emilia Sabău, 2024. "The Volatility Dynamics of Prices in the European Power Markets during the COVID-19 Pandemic Period," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
- Blanka Tundys & Agnieszka Bretyn & Maciej Urbaniak, 2021. "Energy Poverty and Sustainable Economic Development: An Exploration of Correlations and Interdependencies in European Countries," Energies, MDPI, vol. 14(22), pages 1-25, November.
- Esperanza Vera‐Toscano & Heather Brown, 2022. "Empirical Evidence on the Incidence and Persistence of Energy Poverty in Australia," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 55(4), pages 515-529, December.
- Rodriguez-Alvarez, Ana & Orea, Luis & Jamasb, Tooraj, 2019.
"Fuel poverty and Well-Being:A consumer theory and stochastic frontier approach,"
Energy Policy, Elsevier, vol. 131(C), pages 22-32.
- Ana Rodríguez-Álvarez & Luis Orea & Tooraj Jamasb, 2016. "Fuel Poverty and Well-Being: A Consumer Theory and Stochastic Frontier Approach," Working Papers EPRG 1628, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
- Adam Pollard & Tim Jones & Stephen Sherratt & Richard A. Sharpe, 2019. "Use of Simple Telemetry to Reduce the Health Impacts of Fuel Poverty and Living in Cold Homes," IJERPH, MDPI, vol. 16(16), pages 1-15, August.
- Nitjakaln Ngamwong & Smitti Darakorn Na Ayuthaya & Supaporn Kiattisin, 2024. "Factor Analysis of Sustainable Livelihood Potential Development for Poverty Alleviation Using Structural Equation Modeling," Sustainability, MDPI, vol. 16(10), pages 1-24, May.
- Arkadiusz Piwowar, 2022. "Energy Poverty as a Current Problem in the Light of Economic and Social Challenges," Energies, MDPI, vol. 15(22), pages 1-9, November.
More about this item
Keywords
energy poverty; Artificial Intelligence; Artificial Neural Networks; indicators; Greece;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:13:p:3163-:d:1423469. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.