Forecasting energy poverty using different machine learning techniques for Missouri
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2024.133904
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Hanjie & Maruejols, Lucie & Yu, Xiaohua, 2021. "Predicting energy poverty with combinations of remote-sensing and socioeconomic survey data in India: Evidence from machine learning," Energy Economics, Elsevier, vol. 102(C).
- Abbas, Khizar & Butt, Khalid Manzoor & Xu, Deyi & Ali, Muhammad & Baz, Khan & Kharl, Sanwal Hussain & Ahmed, Mansoor, 2022. "Measurements and determinants of extreme multidimensional energy poverty using machine learning," Energy, Elsevier, vol. 251(C).
- Dalla Longa, Francesco & Sweerts, Bart & van der Zwaan, Bob, 2021. "Exploring the complex origins of energy poverty in The Netherlands with machine learning," Energy Policy, Elsevier, vol. 156(C).
- Milena N Rajić & Miroslav B Milovanović & Dragan S Antić & Rado M Maksimović & Pedja M Milosavljević & Dragan Lj Pavlović, 2020. "Analyzing energy poverty using intelligent approach," Energy & Environment, , vol. 31(8), pages 1448-1472, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Elpida Kalfountzou & Lefkothea Papada & Christos Tourkolias & Sevastianos Mirasgedis & Dimitris Kaliampakos & Dimitris Damigos, 2025. "A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction," Energies, MDPI, vol. 18(5), pages 1-20, February.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Spandagos, Constantine & Tovar Reaños, Miguel Angel & Lynch, Muireann Á., 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Energy Economics, Elsevier, vol. 128(C).
- Elpida Kalfountzou & Lefkothea Papada & Christos Tourkolias & Sevastianos Mirasgedis & Dimitris Kaliampakos & Dimitris Damigos, 2025. "A Comparative Analysis of Machine Learning Algorithms in Energy Poverty Prediction," Energies, MDPI, vol. 18(5), pages 1-20, February.
- Takako Mochida & Andrew Chapman & Benjamin Craig McLellan, 2025. "Exploring Energy Poverty: Toward a Comprehensive Predictive Framework," Energies, MDPI, vol. 18(10), pages 1-23, May.
- Li, Jiajia & Yang, Shiyu & Li, Jun & Li, Houjian, 2024. "Targeting SDG7: Identifying heterogeneous energy dilemmas for socially disadvantaged groups in India using machine learning," Energy Economics, Elsevier, vol. 138(C).
- Al Kez, Dlzar & Foley, Aoife & Abdul, Zrar Khald & Del Rio, Dylan Furszyfer, 2024. "Energy poverty prediction in the United Kingdom: A machine learning approach," Energy Policy, Elsevier, vol. 184(C).
- Lefkothea Papada & Dimitris Kaliampakos, 2024. "Artificial Neural Networks as a Tool to Understand Complex Energy Poverty Relationships: The Case of Greece," Energies, MDPI, vol. 17(13), pages 1-19, June.
- Fu Wang & Hong Geng & Donglan Zha & Chaoqun Zhang, 2023. "Multidimensional Energy Poverty in China: Measurement and Spatio-Temporal Disparities Characteristics," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 168(1), pages 45-78, August.
- Yuxiang Xie & E. Xie, 2023. "Measuring and Analyzing the Welfare Effects of Energy Poverty in Rural China Based on a Multi-Dimensional Energy Poverty Index," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
- Wang, Hanjie & Yu, Xiaohua, 2023. "Carbon dioxide emission typology and policy implications: Evidence from machine learning," China Economic Review, Elsevier, vol. 78(C).
- Budría, Santiago & Fermé, Eduardo & Freitas, Diogo Nuno, 2025. "Toward Proactive Policy Design: Identifying 'To-Be' Energy-Poor Households Using Shap for Early Intervention," IZA Discussion Papers 17669, Institute of Labor Economics (IZA).
- Budría, Santiago & Bravo Chew, Leslie, 2025. "Enduring Inequalities: Analyzing Energy Poverty Inertia Across K-Means Clusters," IZA Discussion Papers 17809, Institute of Labor Economics (IZA).
- Jahanger, Atif & Hossain, Mohammad Razib & Awan, Ashar & Adebayo, Tomiwa Sunday, 2024. "Uplifting India from severe energy poverty accounting for strong asymmetries: Do inclusive financial development, digitization and human capital help reduce the asymmetry?," Energy Economics, Elsevier, vol. 134(C).
- Spandagos, Constantine & Tovar Reaños, Miguel & Lynch, Muireann Á, 2023. "Energy poverty prediction and effective targeting for just transitions with machine learning," Papers WP762, Economic and Social Research Institute (ESRI).
- Hasheminasab, Hamidreza & Streimikiene, Dalia & Pishahang, Mohammad, 2023. "A novel energy poverty evaluation: Study of the European Union countries," Energy, Elsevier, vol. 264(C).
- Milena Nebojsa Rajić & Rado M. Maksimović & Pedja Milosavljević, 2022. "Energy Management Model for Sustainable Development in Hotels within WB6," Sustainability, MDPI, vol. 14(24), pages 1-19, December.
- Utsav Bhattarai & Tek Maraseni & Laxmi P. Devkota & Armando Apan, 2024. "Evaluating four decades of energy policy evolution for sustainable development of a South Asian country—Nepal: A comprehensive review," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(6), pages 6703-6731, December.
- Abdul-Hamid, Asma-Qamaliah & Ali, Mohd Helmi & Osman, Lokhman Hakim & Tseng, Ming-Lang & Lim, Ming K., 2022. "Industry 4.0 quasi-effect between circular economy and sustainability: Palm oil industry," International Journal of Production Economics, Elsevier, vol. 253(C).
- Keyu Chen & Chao Feng, 2022. "Linking Housing Conditions and Energy Poverty: From a Perspective of Household Energy Self-Restriction," IJERPH, MDPI, vol. 19(14), pages 1-17, July.
- María Gabriela González Bautista & Eduardo Germán Zurita Moreano & Juan Pablo Vallejo Mata & Magda Francisca Cejas Martinez, 2024. "How Do Remittances Influence the Mitigation of Energy Poverty in Latin America? An Empirical Analysis Using a Panel Data Approach," Economies, MDPI, vol. 12(2), pages 1-26, February.
- Makate, Marshall, 2024. "Turning the page on energy poverty? Quasi-experimental evidence on education and energy poverty in Zimbabwe," Energy Economics, Elsevier, vol. 137(C).
More about this item
Keywords
Energy poverty; Decision trees; Random forest; Extreme gradient boosting (XGB); Support vector machine (SVM);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:313:y:2024:i:c:s036054422403682x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.