IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i11p2634-d1404919.html
   My bibliography  Save this article

Techno-Economic Evaluation of CSP–PV Hybrid Plants with Heat Pump in a Temperature Booster Configuration

Author

Listed:
  • Javier Iñigo-Labairu

    (German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Köln, Germany)

  • Jürgen Dersch

    (German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Köln, Germany)

  • Tobias Hirsch

    (German Aerospace Center (DLR), Institute of Solar Research, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

  • Stefano Giuliano

    (German Aerospace Center (DLR), Institute of Solar Research, Pfaffenwaldring 38-40, 70569 Stuttgart, Germany)

  • Matthias Loevenich

    (German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Köln, Germany)

  • Diego Córdoba

    (German Aerospace Center (DLR), Institute of Solar Research, Linder Höhe, 51147 Köln, Germany)

Abstract

Concentrated solar power (CSP)—photovoltaic (PV) hybrid power plants allow for the generation of cheap electrical energy with a high capacity factor (CF). A deep integration of both technologies offers synergies, using parts of the PV generated electricity for heating the thermal storage tank of the CSP unit. Such configurations have been previously studied for systems coupled by an electric resistance heater (ERH). In this work, the coupling of a CSP and a PV plant using a heat pump (HP) was analyzed due to the higher efficiency of heat pumps. The heat pump is used as a booster to lift the salt temperature in the storage system from 383 to 565 °C in order to reach higher turbine efficiency. A techno-economic analysis of the system was performed using the levelized cost of electricity (LCOE), the capacity factor and nighttime electricity fraction as variables for the representation. The CSP–PV hybrid with a booster heat pump was compared with other technologies such as a CSP–PV hybrid plant coupled by an electric heater, a standalone parabolic trough plant (PT), a photovoltaic system with battery storage (PV–BESS), and a PV thermal power plant (PVTP) consisting of a PV plant with an electric heater, thermal energy storage (TES) and a power block (PB).

Suggested Citation

  • Javier Iñigo-Labairu & Jürgen Dersch & Tobias Hirsch & Stefano Giuliano & Matthias Loevenich & Diego Córdoba, 2024. "Techno-Economic Evaluation of CSP–PV Hybrid Plants with Heat Pump in a Temperature Booster Configuration," Energies, MDPI, vol. 17(11), pages 1-20, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2634-:d:1404919
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/11/2634/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/11/2634/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:11:p:2634-:d:1404919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.