Comparison of Molten Salts and Thermal Oil in Parabolic Trough Power Plants for Different Sites and Different Storage Capacities
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Guccione, Salvatore & Guedez, Rafael, 2023. "Techno-economic optimization of molten salt based CSP plants through integration of supercritical CO2 cycles and hybridization with PV and electric heaters," Energy, Elsevier, vol. 283(C).
- Javier Iñigo-Labairu & Jürgen Dersch & Tobias Hirsch & Stefano Giuliano & Matthias Loevenich & Diego Córdoba, 2024. "Techno-Economic Evaluation of CSP–PV Hybrid Plants with Heat Pump in a Temperature Booster Configuration," Energies, MDPI, vol. 17(11), pages 1-20, May.
- Surender Kannaiyan & Neeraj Dhanraj Bokde, 2022. "Performance of Parabolic Trough Collector with Different Heat Transfer Fluids and Control Operation," Energies, MDPI, vol. 15(20), pages 1-23, October.
- Alberto Giaconia & Anna Chiara Tizzoni & Salvatore Sau & Natale Corsaro & Emiliana Mansi & Annarita Spadoni & Tiziano Delise, 2021. "Assessment and Perspectives of Heat Transfer Fluids for CSP Applications," Energies, MDPI, vol. 14(22), pages 1-25, November.
- Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
- Delise, T. & Tizzoni, A.C. & Menale, C. & Telling, M.T.F. & Bubbico, R. & Crescenzi, T. & Corsaro, N. & Sau, S. & Licoccia, S., 2020. "Technical and economic analysis of a CSP plant presenting a low freezing ternary mixture as storage and transfer fluid," Applied Energy, Elsevier, vol. 265(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Starke, Allan R. & Cardemil, José M. & Bonini, Vinicius R.B. & Escobar, Rodrigo & Castro-Quijada, Matías & Videla, Álvaro, 2024. "Assessing the performance of novel molten salt mixtures on CSP applications," Applied Energy, Elsevier, vol. 359(C).
- Giovanni Salvatore Sau & Valerio Tripi & Anna Chiara Tizzoni & Raffaele Liberatore & Emiliana Mansi & Annarita Spadoni & Natale Corsaro & Mauro Capocelli & Tiziano Delise & Anna Della Libera, 2021. "High-Temperature Chloride-Carbonate Phase Change Material: Thermal Performances and Modelling of a Packed Bed Storage System for Concentrating Solar Power Plants," Energies, MDPI, vol. 14(17), pages 1-17, August.
- David Saldivia & Robert A. Taylor, 2023. "A Novel Dual Receiver–Storage Design for Concentrating Solar Thermal Plants Using Beam-Down Optics," Energies, MDPI, vol. 16(10), pages 1-23, May.
- Wang, Qiliang & Yao, Yao & Shen, Yongting & Shen, Zhicheng & Yang, Hongxing, 2024. "A mutually beneficial system incorporating parabolic trough concentrating solar power system with photovoltaics: A comprehensive techno-economic analysis," Applied Energy, Elsevier, vol. 360(C).
- Wang, Yuanyuan & Wang, Zixuan & Lu, Yuanwei & Wu, Yuting & Zhang, Cancan, 2025. "Phase diagram calculation and neural network prediction of nitrate/nitrite molten salts with wide working temperature range for thermal storage system," Energy, Elsevier, vol. 322(C).
- Dabwan, Yousef N. & Zhang, Liang & Pei, Gang, 2023. "A novel inlet air cooling system to improve the performance of intercooled gas turbine combined cycle power plants in hot regions," Energy, Elsevier, vol. 283(C).
- Wang, Qiliang & Pei, Gang & Yang, Hongxing, 2021. "Techno-economic assessment of performance-enhanced parabolic trough receiver in concentrated solar power plants," Renewable Energy, Elsevier, vol. 167(C), pages 629-643.
- Guccione, Salvatore & Guedez, Rafael, 2024. "Techno-economic analysis of power-to-heat-to-power plants: Mapping optimal combinations of thermal energy storage and power cycles," Energy, Elsevier, vol. 312(C).
- Sylvain Rodat & Richard Thonig, 2024. "Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data," Clean Technol., MDPI, vol. 6(1), pages 1-14, March.
- Feng, Chenjia & Shao, Chengcheng & Wang, Xifan, 2021. "CSP clustering in unit commitment for power system production cost modeling," Renewable Energy, Elsevier, vol. 168(C), pages 1217-1228.
- Prestigiacomo, Claudia & Giaconia, Alberto & Proietto, Federica & Caputo, Giampaolo & Balog, Irena & Ollà, Egnazio & Terranova, Chiara Freni & Scialdone, Onofrio & Galia, Alessandro, 2024. "Concentrated solar heat for the decarbonization of industrial chemical processes: a case study on crude oil distillation," Energy, Elsevier, vol. 293(C).
- Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2021. "Dynamic simulation and performance analysis of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Renewable Energy, Elsevier, vol. 179(C), pages 1458-1471.
- Alberto Giaconia & Anna Chiara Tizzoni & Salvatore Sau & Natale Corsaro & Emiliana Mansi & Annarita Spadoni & Tiziano Delise, 2021. "Assessment and Perspectives of Heat Transfer Fluids for CSP Applications," Energies, MDPI, vol. 14(22), pages 1-25, November.
- Na, Heya & Zhang, Cancan & Wu, Yuting & Wang, Guoqing & Lu, Yuanwei, 2024. "Effect of Na2CO3 content on thermophysical properties, corrosion behaviors of KNO3-NaNO2 molten salt," Energy, Elsevier, vol. 311(C).
- Prieto, Cristina & López-Román, Antón & Cabeza, Luisa F., 2024. "Failure analysis of the leakage and ignition of heat transfer fluid in a concentrating solar power (CSP) pilot plant," Renewable Energy, Elsevier, vol. 237(PA).
- Xi, Yufei & Zhang, Zhengfa & Zhang, Jiansheng, 2024. "Multi-objective optimization strategy for regional multi-energy systems integrated with medium-high temperature solar thermal technology," Energy, Elsevier, vol. 300(C).
- Gul, Eid & Baldinelli, Giorgio & Wang, Jinwen & Bartocci, Pietro & Shamim, Tariq, 2025. "Artificial intelligence based forecasting and optimization model for concentrated solar power system with thermal energy storage," Applied Energy, Elsevier, vol. 382(C).
- Ortiz, C. & García-Luna, S. & Carro, A. & Carvajal, E. & Chacartegui, R., 2024. "Techno-economic analysis of a modular thermochemical battery for electricity storage based on calcium-looping," Applied Energy, Elsevier, vol. 367(C).
- Zhang, Shunqi & Liu, Ming & Zhao, Yongliang & Liu, Jiping & Yan, Junjie, 2022. "Energy and exergy analyses of a parabolic trough concentrated solar power plant using molten salt during the start-up process," Energy, Elsevier, vol. 254(PC).
- Panagiotis Drosatos & Grigorios Itskos & Nikolaos Nikolopoulos, 2023. "Cross-Cutting CFD Support for Efficient Design of a Molten Salt Electric Heater for Flexible Concentrating Solar Power Plants," Energies, MDPI, vol. 16(17), pages 1-19, September.
More about this item
Keywords
parabolic trough; molten salt; levelized cost of energy; freeze protection;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:18:y:2025:i:2:p:326-:d:1566046. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.