IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i10p2432-d1397749.html
   My bibliography  Save this article

Viability of an Open-Loop Heat Pump Drying System in South African Climatic Conditions

Author

Listed:
  • Solomzi Marco Ngalonkulu

    (Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Staatsartillerie Road, Pretoria West, Pretoria 0183, South Africa)

  • Zhongjie Huan

    (Department of Mechanical and Mechatronics Engineering, Tshwane University of Technology, Staatsartillerie Road, Pretoria West, Pretoria 0183, South Africa)

Abstract

Drying agricultural produce consumes a considerable amount of energy. As an energy-efficient system, a heat pump can improve the energy efficiency of the drying process and hence reduce the energy consumption, especially in South Africa, where both sub-tropical and temperate weather conditions dominate. The objective of this research is to experimentally investigate the impacts of weather conditions on the operational conditions and thermal performance of an open-loop air-source heat pump drying system. The experimental investigation was conducted in a climate chamber where the climate conditions were simulated from −10 °C to 20 °C with an interval of 10 °C for the typical temperature range of the harvesting season in South Africa. The findings indicate that ambient temperatures have a significant impact on both the operating conditions and thermal performance of an open-loop heat pump system; the change in ambient temperatures from −10 °C to 20 °C leads to a 141.6% improvement in the suction pressure, a 214.2% increase in the discharge pressure, and 30.1% increase in the compression ratio, as well as a consequent increase of 130.6% in the refrigerant mass flow rate (from 0.0067 to 0.0155 kg/s), resulting in a corresponding increase in the coefficient of performance (COP) of the heat pump drying system by about 42.1%. Therefore, this study suggests that, while using an open-loop air-source heat pump drying system utilising R134a refrigerant is feasible in South Africa, it may be practically limited to regions with warm climates or during warmer seasons.

Suggested Citation

  • Solomzi Marco Ngalonkulu & Zhongjie Huan, 2024. "Viability of an Open-Loop Heat Pump Drying System in South African Climatic Conditions," Energies, MDPI, vol. 17(10), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2432-:d:1397749
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/10/2432/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/10/2432/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2432-:d:1397749. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.