IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v150y2020icp918-923.html
   My bibliography  Save this article

Performance analysis and mathematical modelling of banana slices in a heat pump drying system

Author

Listed:
  • Tunckal, Cüneyt
  • Doymaz, İbrahim

Abstract

In this study, banana slices were dried at different temperatures in a closed-loop heat pump drying system. As the temperature and the slice thickness increased, the drying time also increased. Midilli & Kucuk model was found to be the best model to explain the experimental data. The effective moisture diffusivity ranged from 1.12 × 10−10 to 1.64 × 10−10 m2/s. The dependence of moisture diffusivity on temperature was described by an Arrhenius-type equation and the activation energy was found to be -51.45 kJ/mol. The highest mean specific moisture extraction ratio (SMER) and coefficient of performance (COP) of HPD system were obtained as 0.212 kg/kWh and 3.059, respectively, at the highest drying air temperature.

Suggested Citation

  • Tunckal, Cüneyt & Doymaz, İbrahim, 2020. "Performance analysis and mathematical modelling of banana slices in a heat pump drying system," Renewable Energy, Elsevier, vol. 150(C), pages 918-923.
  • Handle: RePEc:eee:renene:v:150:y:2020:i:c:p:918-923
    DOI: 10.1016/j.renene.2020.01.040
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148120300458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2020.01.040?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    2. Fan, Hongming & Shao, Shuangquan & Tian, Changqing, 2014. "Performance investigation on a multi-unit heat pump for simultaneous temperature and humidity control," Applied Energy, Elsevier, vol. 113(C), pages 883-890.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, L.Z. & Jiang, L. & Xu, Z.C. & Zhang, X.J. & Fan, Y.B. & Adnouni, M. & Zhang, C.B., 2022. "Optimization of a variable-temperature heat pump drying process of shiitake mushrooms using response surface methodology," Renewable Energy, Elsevier, vol. 198(C), pages 1267-1278.
    2. Liu, Zi-Liang & Zielinska, Magdalena & Yang, Xu-Hai & Yu, Xian-Long & Chen, Chang & Wang, Hui & Wang, Jun & Pan, Zhongli & Xiao, Hong-Wei, 2021. "Moisturizing strategy for enhanced convective drying of mushroom slices," Renewable Energy, Elsevier, vol. 172(C), pages 728-739.
    3. Yu, Xinyi & Wu, Weidong & Wang, Jing & Jin, Yunfei & Li, Zhenbo, 2022. "Experimental study on effect of drying air supply temperature on performance of a quasi-two-stage closed loop heat pump drying system for lentinus edodes," Renewable Energy, Elsevier, vol. 201(P1), pages 1038-1049.
    4. Madhankumar, S. & Viswanathan, Karthickeyan, 2022. "Computational and experimental study of a novel corrugated-type absorber plate solar collector with thermal energy storage moisture removal device," Applied Energy, Elsevier, vol. 324(C).
    5. Taesub Lim & Yong-Kyu Baik & Daeung Danny Kim, 2020. "Heating Performance Analysis of an Air-to-Water Heat Pump Using Underground Air for Greenhouse Farming," Energies, MDPI, vol. 13(15), pages 1-9, July.
    6. Hao, Wengang & Liu, Shuonan & Lai, Yanhua & Wang, Mingtao & Liu, Shengze, 2022. "Research on drying Lentinus edodes in a direct expansion heat pump assisted solar drying system and performance of different operating modes," Renewable Energy, Elsevier, vol. 196(C), pages 638-647.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.
    2. Ángel M. Costa & Rebeca Bouzón & Diego Vergara & José A. Orosa, 2019. "Eco-friendly Pressure Drop Dehumidifier: An Experimental and Numerical Analysis," Sustainability, MDPI, vol. 11(7), pages 1-17, April.
    3. Joshua M. Pearce & Nelson Sommerfeldt, 2021. "Economics of Grid-Tied Solar Photovoltaic Systems Coupled to Heat Pumps: The Case of Northern Climates of the U.S. and Canada," Energies, MDPI, vol. 14(4), pages 1-17, February.
    4. Naili, Nabiha & Kooli, Sami, 2021. "Solar-assisted ground source heat pump system operated in heating mode: A case study in Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    5. Yan, Huaxia & Xia, Yudong & Deng, Shiming, 2017. "Simulation study on a three-evaporator air conditioning system for simultaneous indoor air temperature and humidity control," Applied Energy, Elsevier, vol. 207(C), pages 294-304.
    6. Nahavandinezhad, Mohammad & Zahedi, Alireza, 2022. "Conceptual design of solar/geothermal hybrid system focusing on technical, economic and environmental parameters," Renewable Energy, Elsevier, vol. 181(C), pages 1110-1125.
    7. Tzinnis, Efstratios & Baldini, Luca, 2021. "Combining sorption storage and electric heat pumps to foster integration of solar in buildings," Applied Energy, Elsevier, vol. 301(C).
    8. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    9. Nizetic, S. & Coko, D. & Marasovic, I., 2014. "Experimental study on a hybrid energy system with small- and medium-scale applications for mild climates," Energy, Elsevier, vol. 75(C), pages 379-389.
    10. Yelnar Yerdesh & Tangnur Amanzholov & Abdurashid Aliuly & Abzal Seitov & Amankeldy Toleukhanov & Mohanraj Murugesan & Olivier Botella & Michel Feidt & Hua Sheng Wang & Alexandr Tsoy & Yerzhan Belyayev, 2022. "Experimental and Theoretical Investigations of a Ground Source Heat Pump System for Water and Space Heating Applications in Kazakhstan," Energies, MDPI, vol. 15(22), pages 1-25, November.
    11. Yao, Jian & Zheng, Sihang & Chen, Daochuan & Dai, Yanjun & Huang, Mingjun, 2021. "Performance improvement of vapor-injection heat pump system by employing PVT collector/evaporator for residential heating in cold climate region," Energy, Elsevier, vol. 219(C).
    12. Ji, Yongming & Wu, Wenze & Qi, Haoyu & Wang, Wenqiang & Hu, Songtao, 2022. "Heat transfer performance analysis of front-end capillary heat exchanger of a subway source heat pump system," Energy, Elsevier, vol. 246(C).
    13. Kofi Owura Amoabeng & Kwang Ho Lee & Jong Min Choi, 2019. "Modeling and Simulation Performance Evaluation of a Proposed Calorimeter for Testing a Heat Pump System," Energies, MDPI, vol. 12(23), pages 1-22, December.
    14. Fan, Yi & Zhao, Xudong & Li, Jing & Cheng, Yuanda & Badiei, Ali & Zhou, Jinzhi & Yu, Min & Li, Guiqiang & Du, Zhenyu & Ji, Jie & Zhu, Zishang & Ma, Xiaoli & Bai, Huifeng & Myers, Steve, 2020. "Operational performance of a novel fast-responsive heat storage/exchanging unit (HSEU) for solar heating systems," Renewable Energy, Elsevier, vol. 151(C), pages 137-151.
    15. Reda, Francesco & Paiho, Satu & Pasonen, Riku & Helm, Martin & Menhart, Florian & Schex, Richard & Laitinen, Ari, 2020. "Comparison of solar assisted heat pump solutions for office building applications in Northern climate," Renewable Energy, Elsevier, vol. 147(P1), pages 1392-1417.
    16. Liu, Meng & He, Yueer & Zhang, Huifu & Su, Heng & Zhang, Ziwei, 2020. "The feasibility of solar thermal-air source heat pump water heaters in renewable energy shortage regions," Energy, Elsevier, vol. 197(C).
    17. Basalike, Pie & Peng, Wang & Zhang, Jili & Lu, Shixiang, 2022. "Numerical investigation on the performance and environmental aspect of roll bond photovoltaic thermal unit condenser incorporating fins on the absorber," Energy, Elsevier, vol. 252(C).
    18. Yang, Liu & Weng, Wenbing & Deng, Shiming, 2020. "A modeling study on a direct expansion based air conditioner having a two-sectioned cooling coil," Applied Energy, Elsevier, vol. 278(C).
    19. Fan, Yi & Zhao, Xudong & Han, Zhonghe & Li, Jing & Badiei, Ali & Akhlaghi, Yousef Golizadeh & Liu, Zhijian, 2021. "Scientific and technological progress and future perspectives of the solar assisted heat pump (SAHP) system," Energy, Elsevier, vol. 229(C).
    20. Kuan, M. & Shakir, Ye. & Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2019. "Numerical simulation of a heat pump assisted solar dryer for continental climates," Renewable Energy, Elsevier, vol. 143(C), pages 214-225.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:150:y:2020:i:c:p:918-923. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.