IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v146y2020icp2524-2534.html
   My bibliography  Save this article

Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night

Author

Listed:
  • Lu, Shixiang
  • Zhang, Jili
  • Liang, Ruobing
  • Zhou, Chao

Abstract

This paper presents a radiative/convective hybrid heat dissipation photovoltaic-thermal heat pump (HHD-PVT-HP) refrigeration system based on the traditional PVT solar heat pump, which can be used to meet the cooling demand of buildings. PVT modules are used for the system condenser. The PVT modules emit heat to the ambient surroundings (hybrid heat dissipation) mainly by two ways: radiation to the night sky and convection with the surrounding air. An experimental study and parametric analysis of the HHD-PVT-HP system is conducted. The experimental results indicate that the HHD-PVT-HP system is able to stably refrigerate on summer night, with an average COPref value ranging from 1.8 to 2.1. Moreover, the heat dissipation performance of the PVT modules is good, with an average hybrid heat dissipation flux of ∼420 W/m2. To predict the operation characteristics of the HHD-PVT-HP under various ambient conditions, a system simulation model is established and validated with experimental data. The simulation results show that changes in the ambient air temperature and wind velocity have obvious effects on the heat dissipation characteristics of the PVT modules and system refrigeration performance. However, when the outdoor wind velocity is greater than 1 m/s, its influence is obviously lessened. Additionally, the relative humidity of the ambient air has little effect on the refrigeration capacity and COPref of the HHD-PVT-HP system.

Suggested Citation

  • Lu, Shixiang & Zhang, Jili & Liang, Ruobing & Zhou, Chao, 2020. "Refrigeration characteristics of a hybrid heat dissipation photovoltaic-thermal heat pump under various ambient conditions on summer night," Renewable Energy, Elsevier, vol. 146(C), pages 2524-2534.
  • Handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2524-2534
    DOI: 10.1016/j.renene.2019.06.179
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119310195
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.06.179?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Hongbing & Zhang, Lei & Jie, Pengfei & Xiong, Yaxuan & Xu, Peng & Zhai, Huixing, 2017. "Performance study of heat-pipe solar photovoltaic/thermal heat pump system," Applied Energy, Elsevier, vol. 190(C), pages 960-980.
    2. Zhou, Jinzhi & Zhao, Xudong & Ma, Xiaoli & Qiu, Zhongzhu & Ji, Jie & Du, Zhenyu & Yu, Min, 2016. "Experimental investigation of a solar driven direct-expansion heat pump system employing the novel PV/micro-channels-evaporator modules," Applied Energy, Elsevier, vol. 178(C), pages 484-495.
    3. Cai, Jingyong & Ji, Jie & Wang, Yunyun & Huang, Wenzhu, 2017. "Operation characteristics of a novel dual source multi-functional heat pump system under various working modes," Applied Energy, Elsevier, vol. 194(C), pages 236-246.
    4. Besagni, Giorgio & Croci, Lorenzo & Nesa, Riccardo & Molinaroli, Luca, 2019. "Field study of a novel solar-assisted dual-source multifunctional heat pump," Renewable Energy, Elsevier, vol. 132(C), pages 1185-1215.
    5. Ni, Long & Dong, Jiankai & Yao, Yang & Shen, Chao & Qv, Dehu & Zhang, Xuedan, 2015. "A review of heat pump systems for heating and cooling of buildings in China in the last decade," Renewable Energy, Elsevier, vol. 84(C), pages 30-45.
    6. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part-B: Applications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 124-155.
    7. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    8. Cui, Yong & Wang, Yiping & Huang, Qunwu & Wei, Shichao, 2016. "Effect of radiation and convection heat transfer on cooling performance of radiative panel," Renewable Energy, Elsevier, vol. 99(C), pages 10-17.
    9. Zhang, Xingxing & Zhao, Xudong & Shen, Jingchun & Xu, Jihuan & Yu, Xiaotong, 2014. "Dynamic performance of a novel solar photovoltaic/loop-heat-pipe heat pump system," Applied Energy, Elsevier, vol. 114(C), pages 335-352.
    10. Tso, C.Y. & Chan, K.C. & Chao, Christopher Y.H., 2017. "A field investigation of passive radiative cooling under Hong Kong’s climate," Renewable Energy, Elsevier, vol. 106(C), pages 52-61.
    11. Zhang, Jing & Zhang, Hong-Hu & He, Ya-Ling & Tao, Wen-Quan, 2016. "A comprehensive review on advances and applications of industrial heat pumps based on the practices in China," Applied Energy, Elsevier, vol. 178(C), pages 800-825.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Basalike, Pie & Peng, Wang & Zhang, Jili & Lu, Shixiang, 2022. "Numerical investigation on the performance and environmental aspect of roll bond photovoltaic thermal unit condenser incorporating fins on the absorber," Energy, Elsevier, vol. 252(C).
    2. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    3. Basalike, Pie & Peng, Wang & Zhang, Jili & Lu, Shixiang, 2022. "Numerical analysis of Roll Bond Photovoltaic Thermal working as a condenser during nighttime," Renewable Energy, Elsevier, vol. 181(C), pages 194-206.
    4. Basalike, Pie & Peng, Wang & Zhang, Jili, 2022. "Numerical study on the performance of photovoltaic thermal unit condenser with water/nanofluids as fluids medium," Renewable Energy, Elsevier, vol. 197(C), pages 606-616.
    5. Zain Ul Abdin & Ahmed Rachid, 2021. "A Survey on Applications of Hybrid PV/T Panels," Energies, MDPI, vol. 14(4), pages 1-23, February.
    6. Bisengimana, Emmanuel & Zhou, Jinzhi & Binama, Maxime & Yuan, Yanping, 2022. "Numerical investigation on the factors influencing the temperature distribution of photovoltaic/thermal (PVT) evaporator/condenser for heat pump systems," Renewable Energy, Elsevier, vol. 194(C), pages 885-901.
    7. Mi, Peiyuan & Zhang, Jili & Han, Youhua & Guo, Xiaochao, 2022. "Operation performance study and prediction of photovoltaic thermal heat pump system engineering in winter," Applied Energy, Elsevier, vol. 306(PB).
    8. Hu, Mingke & Zhao, Bin & Suhendri, & Ao, Xianze & Cao, Jingyu & Wang, Qiliang & Riffat, Saffa & Su, Yuehong & Pei, Gang, 2022. "Applications of radiative sky cooling in solar energy systems: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jingyong & Li, Zhouhang & Ji, Jie & Zhou, Fan, 2019. "Performance analysis of a novel air source hybrid solar assisted heat pump," Renewable Energy, Elsevier, vol. 139(C), pages 1133-1145.
    2. Obalanlege, Mustapha A. & Mahmoudi, Yasser & Douglas, Roy & Bailie, David & Davidson, John, 2020. "Experimental assessment of short cycling in a hybrid photovoltaic-thermal heat pump system," Applied Energy, Elsevier, vol. 268(C).
    3. Menegon, Diego & Persson, Tomas & Haberl, Robert & Bales, Chris & Haller, Michel, 2020. "Direct characterisation of the annual performance of solar thermal and heat pump systems using a six-day whole system test," Renewable Energy, Elsevier, vol. 146(C), pages 1337-1353.
    4. Li, Xianting & Lyu, Weihua & Ran, Siyuan & Wang, Baolong & Wu, Wei & Yang, Zixu & Jiang, Sihang & Cui, Mengdi & Song, Pengyuan & You, Tian & Shi, Wenxing, 2020. "Combination principle of hybrid sources and three typical types of hybrid source heat pumps for year-round efficient operation," Energy, Elsevier, vol. 193(C).
    5. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng & Li, Yunhai, 2023. "Mathematical and experimental investigation about the dual-source heat pump integrating low concentrated photovoltaic and finned-tube exchanger," Energy, Elsevier, vol. 263(PE).
    6. Mohanraj, M. & Belyayev, Ye. & Jayaraj, S. & Kaltayev, A., 2018. "Research and developments on solar assisted compression heat pump systems – A comprehensive review (Part A: Modeling and modifications)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 83(C), pages 90-123.
    7. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    8. Ji, Qiang & Han, Zongwei & Li, Xiuming & Yang, Lingyan, 2022. "Energy and economic evaluation of the air source hybrid heating system driven by off-peak electric thermal storage in cold regions," Renewable Energy, Elsevier, vol. 182(C), pages 69-85.
    9. Jia, Teng & Dou, Pengbo & Chu, Peng & Dai, Yanjun, 2020. "Proposal and performance analysis of a novel solar-assisted resorption-subcooled compression hybrid heat pump system for space heating in cold climate condition," Renewable Energy, Elsevier, vol. 150(C), pages 1136-1150.
    10. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Li, Yunhai & Li, Jing & Zhao, Xudong, 2023. "Annual analysis of the photovoltaic direct-expansion heat pump assisted by double condensing equipment for secondary power generation," Renewable Energy, Elsevier, vol. 209(C), pages 169-183.
    11. Badiei, A. & Golizadeh Akhlaghi, Y. & Zhao, X. & Shittu, S. & Xiao, X. & Li, J. & Fan, Y. & Li, G., 2020. "A chronological review of advances in solar assisted heat pump technology in 21st century," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    12. Jia, Teng & Dai, Enqian & Dai, Yanjun, 2019. "Thermodynamic analysis and optimization of a balanced-type single-stage NH3-H2O absorption-resorption heat pump cycle for residential heating application," Energy, Elsevier, vol. 171(C), pages 120-134.
    13. Hu, Mingke & Zhao, Bin & Ao, Xianze & Zhao, Pinghui & Su, Yuehong & Pei, Gang, 2018. "Field investigation of a hybrid photovoltaic-photothermic-radiative cooling system," Applied Energy, Elsevier, vol. 231(C), pages 288-300.
    14. Herrando, M. & Coca-Ortegón, A. & Guedea, I. & Fueyo, N., 2023. "Experimental validation of a solar system based on hybrid photovoltaic-thermal collectors and a reversible heat pump for the energy provision in non-residential buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 178(C).
    15. Jia, Teng & Dai, Yanjun, 2018. "Development of a novel unbalanced ammonia-water absorption-resorption heat pump cycle for space heating," Energy, Elsevier, vol. 161(C), pages 251-265.
    16. Josué F. Rosales-Pérez & Andrés Villarruel-Jaramillo & José A. Romero-Ramos & Manuel Pérez-García & José M. Cardemil & Rodrigo Escobar, 2023. "Hybrid System of Photovoltaic and Solar Thermal Technologies for Industrial Process Heat," Energies, MDPI, vol. 16(5), pages 1-45, February.
    17. Abbas, Sajid & Zhou, Jinzhi & Hassan, Atazaz & Yuan, Yanping & Yousuf, Saima & Sun, Yafen & Zeng, Chao, 2023. "Economic evaluation and annual performance analysis of a novel series-coupled PV/T and solar TC with solar direct expansion heat pump system: An experimental and numerical study," Renewable Energy, Elsevier, vol. 204(C), pages 400-420.
    18. Song, Zhiying & Ji, Jie & Zhang, Yuzhe & Cai, Jingyong & Li, Zhaomeng, 2022. "Experimental and numerical investigation on a photovoltaic heat pump with two condensers: A micro-channel heat pipe/thermoelectric generator condenser and a submerged coil condenser," Energy, Elsevier, vol. 242(C).
    19. Abbas, Sajid & Yuan, Yanping & Zhou, Jinzhi & Hassan, Atazaz & Yu, Min & Yasheng, Ji, 2022. "Experimental and analytical analysis of the impact of different base plate materials and design parameters on the performance of the photovoltaic/thermal system," Renewable Energy, Elsevier, vol. 187(C), pages 522-536.
    20. Jorge E. De León-Ruiz & Ignacio Carvajal-Mariscal & Antonin Ponsich, 2019. "Feasibility Analysis and Performance Evaluation and Optimization of a DXSAHP Water Heater Based on the Thermal Capacity of the System: A Case Study," Energies, MDPI, vol. 12(20), pages 1-38, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:146:y:2020:i:c:p:2524-2534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.