Deriving Input Variables through Applied Machine Learning for Short-Term Electric Load Forecasting in Eskilstuna, Sweden
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Haeran Cho & Yannig Goude & Xavier Brossat & Qiwei Yao, 2013. "Modeling and Forecasting Daily Electricity Load Curves: A Hybrid Approach," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 108(501), pages 7-21, March.
- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
- Abu-Shikhah, Nazih & Elkarmi, Fawwaz, 2011. "Medium-term electric load forecasting using singular value decomposition," Energy, Elsevier, vol. 36(7), pages 4259-4271.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shao, Zhen & Chao, Fu & Yang, Shan-Lin & Zhou, Kai-Le, 2017. "A review of the decomposition methodology for extracting and identifying the fluctuation characteristics in electricity demand forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 123-136.
- Mingotti, Nicola & Lillo Rodríguez, Rosa Elvira & Romo, Juan, 2015. "A Random Walk Test for Functional Time Series," DES - Working Papers. Statistics and Econometrics. WS ws1506, Universidad Carlos III de Madrid. Departamento de EstadÃstica.
- Christina Carty & Oscar Claveria, 2022.
"“The nexus between variable renewable energy, economy and climate: Evidence from European countries by means of exploratory graphical analysis”,"
AQR Working Papers
202205, University of Barcelona, Regional Quantitative Analysis Group, revised May 2022.
- Christina Carty & Oscar Claveria, 2022. ""The nexus between variable renewable energy, economy and climate: Evidence from European countries by means of exploratory graphical analysis"," IREA Working Papers 202207, University of Barcelona, Research Institute of Applied Economics, revised May 2022.
- Dunguo Mou, 2018. "Wind Power Development and Energy Storage under China’s Electricity Market Reform—A Case Study of Fujian Province," Sustainability, MDPI, vol. 10(2), pages 1-20, January.
- Brunner, Christoph & Deac, Gerda & Braun, Sebastian & Zöphel, Christoph, 2020. "The future need for flexibility and the impact of fluctuating renewable power generation," Renewable Energy, Elsevier, vol. 149(C), pages 1314-1324.
- Pang, Simian & Xu, Qingshan & Yang, Yongbiao & Cheng, Aoxue & Shi, Zhengkun & Shi, Yun, 2024. "Robust decomposition and tracking strategy for demand response enhanced virtual power plants," Applied Energy, Elsevier, vol. 373(C).
- Arjuna Nebel & Christine Krüger & Tomke Janßen & Mathieu Saurat & Sebastian Kiefer & Karin Arnold, 2020. "Comparison of the Effects of Industrial Demand Side Management and Other Flexibilities on the Performance of the Energy System," Energies, MDPI, vol. 13(17), pages 1-20, August.
- Min, C.G. & Park, J.K. & Hur, D. & Kim, M.K., 2016. "A risk evaluation method for ramping capability shortage in power systems," Energy, Elsevier, vol. 113(C), pages 1316-1324.
- Alessandro Bosisio & Matteo Moncecchi & Andrea Morotti & Marco Merlo, 2021. "Machine Learning and GIS Approach for Electrical Load Assessment to Increase Distribution Networks Resilience," Energies, MDPI, vol. 14(14), pages 1-23, July.
- Tania García-Sánchez & Arbinda Kumar Mishra & Elías Hurtado-Pérez & Rubén Puché-Panadero & Ana Fernández-Guillamón, 2020. "A Controller for Optimum Electrical Power Extraction from a Small Grid-Interconnected Wind Turbine," Energies, MDPI, vol. 13(21), pages 1-16, November.
- Ben Christopher, S.J. & Carolin Mabel, M., 2020. "A bio-inspired approach for probabilistic energy management of micro-grid incorporating uncertainty in statistical cost estimation," Energy, Elsevier, vol. 203(C).
- Wang, Bo & Deng, Nana & Li, Haoxiang & Zhao, Wenhui & Liu, Jie & Wang, Zhaohua, 2021. "Effect and mechanism of monetary incentives and moral suasion on residential peak-hour electricity usage," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
- Andrychowicz, Mateusz & Olek, Blazej & Przybylski, Jakub, 2017. "Review of the methods for evaluation of renewable energy sources penetration and ramping used in the Scenario Outlook and Adequacy Forecast 2015. Case study for Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 703-714.
- Huang, Mengdi & Chang, Jianxia & Guo, Aijun & Zhao, Mingzhe & Ye, Xiangmin & Lei, Kaixuan & Peng, Zhiwen & Wang, Yimin, 2023. "Cascade hydropower stations optimal dispatch considering flexible margin in renewable energy power system," Energy, Elsevier, vol. 285(C).
- Sun, Wei & Zhang, Chongchong, 2018. "Analysis and forecasting of the carbon price using multi—resolution singular value decomposition and extreme learning machine optimized by adaptive whale optimization algorithm," Applied Energy, Elsevier, vol. 231(C), pages 1354-1371.
- Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
- Pacheco, A. & Gorbeña, E. & Sequeira, C. & Jerez, S., 2017. "An evaluation of offshore wind power production by floatable systems: A case study from SW Portugal," Energy, Elsevier, vol. 131(C), pages 239-250.
- Pape, Christian, 2018. "The impact of intraday markets on the market value of flexibility — Decomposing effects on profile and the imbalance costs," Energy Economics, Elsevier, vol. 76(C), pages 186-201.
- Sinn, Hans-Werner, 2017.
"Buffering volatility: A study on the limits of Germany's energy revolution,"
European Economic Review, Elsevier, vol. 99(C), pages 130-150.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany’s Energy Revolution," NBER Working Papers 22467, National Bureau of Economic Research, Inc.
- Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," Munich Reprints in Economics 49895, University of Munich, Department of Economics.
- Hans-Werner Sinn, 2016. "Buffering Volatility: A Study on the Limits of Germany's Energy Revolution," CESifo Working Paper Series 5950, CESifo.
- Maitanova, Nailya & Schlüters, Sunke & Hanke, Benedikt & von Maydell, Karsten, 2024. "An analytical method for quantifying the flexibility potential of decentralised energy systems," Applied Energy, Elsevier, vol. 364(C).
More about this item
Keywords
short-term load forecasting; electrical grid; machine learning; multiple linear regression; light gradient boosting machine; explanatory variables;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:10:p:2246-:d:1389738. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.