IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2023i1p215-d1311075.html
   My bibliography  Save this article

Energy Harvesting Opportunities in Geoenvironmental Engineering

Author

Listed:
  • Leonardo Marchiori

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    FibEnTech, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Maria Vitoria Morais

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    FibEnTech, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • André Studart

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    FibEnTech, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • António Albuquerque

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    FibEnTech, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Luis Andrade Pais

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Luis Ferreira Gomes

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

  • Victor Cavaleiro

    (Civil Engineering and Architecture Department, University of Beira Interior, Fonte Calçada do Lameiro, 6201-001 Covilhã, Portugal
    GeoBioTec, Faculty of Engineering, University of Beira Interior, 6201-001 Covilhã, Portugal)

Abstract

Geoenvironmental engineering involves defining solutions for complex problems, such as containment systems management, contaminant transport control, wastewater management, remediation of contaminated sites and valorization of geomaterials and wastes. In the last years, energy harvesting (EH)—or energy scavenging—methods and technologies have been developed to reduce the dependence on traditional energy sources, namely fossil fuels, and nuclear power, also responding to the increase in energy demands for human activities and to fulfill sustainable development goals. EH in geoenvironmental works and the surrounding soil and water environment includes a set of processes for capturing and accumulating energy from several sources considered wasted or unusable associated with soil dynamics; the stress and strain of geomaterials, hydraulic, vibrations, biochemical, light, heating and wind sources can be potential EH systems. Therefore, this work presents a review of the literature and critical analysis on the main opportunities for EH capturing, accumulating and use in geoenvironmental works, among basic electric concepts and mechanisms, analyzing these works in complex conditions involving biological-, chemical-, mechanical-, hydraulic- and thermal-coupled actions, concluding with the main investigation and challenges within geoenvironmental aspects for EH purposes.

Suggested Citation

  • Leonardo Marchiori & Maria Vitoria Morais & André Studart & António Albuquerque & Luis Andrade Pais & Luis Ferreira Gomes & Victor Cavaleiro, 2023. "Energy Harvesting Opportunities in Geoenvironmental Engineering," Energies, MDPI, vol. 17(1), pages 1-24, December.
  • Handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:215-:d:1311075
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/1/215/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/1/215/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hongju Da & Degang Xu & Jufeng Li & Zhihe Tang & Jiaxin Li & Chen Wang & Hui Luan & Fang Zhang & Yong Zeng, 2023. "Influencing Factors of Carbon Emission from Typical Refining Units: Identification, Analysis, and Mitigation Potential," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. António Trota & Pedro Ferreira & Luis Gomes & João Cabral & Peter Kallberg, 2019. "Power Production Estimates from Geothermal Resources by Means of Small-Size Compact Climeon Heat Power Converters: Case Studies from Portugal (Sete Cidades, Azores and Longroiva Spa, Mainland)," Energies, MDPI, vol. 12(14), pages 1-16, July.
    3. Giuseppe Maggiotto & Gianpiero Colangelo & Marco Milanese & Arturo de Risi, 2023. "Thermochemical Technologies for the Optimization of Olive Wood Biomass Energy Exploitation: A Review," Energies, MDPI, vol. 16(19), pages 1-17, September.
    4. George Ekonomou & Angeliki N. Menegaki, 2023. "China in the Renewable Energy Era: What Has Been Done and What Remains to Be Done," Energies, MDPI, vol. 16(18), pages 1-21, September.
    5. Lijun Chen & Yixi Zhao & Yunchu Shen & Kai Wang & Pibo Ma & Fumei Wang & Chaoyu Chen, 2023. "3D Stitching Double Weave Fabric-Based Elastic Triboelectric Nanogenerator for Energy Harvesting and Self-Powered Sensing," Energies, MDPI, vol. 16(5), pages 1-13, February.
    6. Anna Kożuch & Dominika Cywicka & Krzysztof Adamowicz & Marek Wieruszewski & Emilia Wysocka-Fijorek & Paweł Kiełbasa, 2023. "The Use of Forest Biomass for Energy Purposes in Selected European Countries," Energies, MDPI, vol. 16(15), pages 1-21, August.
    7. Sarkar, Prabir & Sharma, Bhaanuj & Malik, Ural, 2014. "Energy generation from grey water in high raised buildings: The case of India," Renewable Energy, Elsevier, vol. 69(C), pages 284-289.
    8. Wang, Hao & Jasim, Abbas & Chen, Xiaodan, 2018. "Energy harvesting technologies in roadway and bridge for different applications – A comprehensive review," Applied Energy, Elsevier, vol. 212(C), pages 1083-1094.
    9. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chandarasekharam, D. & Aref, Lashin & Nassir, Al Arifi, 2014. "CO2 mitigation strategy through geothermal energy, Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 154-163.
    2. Jiaxin Yu & Jun Wang, 2020. "Optimization Design of a Rain-Power Utilization System Based on a Siphon and Its Application in a High-Rise Building," Energies, MDPI, vol. 13(18), pages 1-18, September.
    3. Tomaszewska Barbara, 2012. "Geothermal Water Resources Management – Economic Aspects Of Their Treatment / Gospodarka Zasobami Wód Termalnych - Ekonomiczne Aspekty Ich Uzdatniania," Gospodarka Surowcami Mineralnymi / Mineral Resources Management, Sciendo, vol. 28(4), pages 59-70, December.
    4. Mahesh, A. & Shoba Jasmin, K.S., 2013. "Role of renewable energy investment in India: An alternative to CO2 mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 414-424.
    5. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    6. Farzan, Hadi & Zaim, Ehsan Hasan & Ameri, Mehran & Amiri, Tayebeh, 2021. "Study on effects of wind velocity on thermal efficiency and heat dynamics of pavement solar collectors: An experimental and numerical study," Renewable Energy, Elsevier, vol. 163(C), pages 1718-1728.
    7. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    8. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    9. George Antoneas & Irene Koronaki, 2024. "Geothermal Solutions for Urban Energy Challenges: A Focus on CO 2 Plume Geothermal Systems," Energies, MDPI, vol. 17(2), pages 1-27, January.
    10. Mrityunjay Singh & Saeed Mahmoodpour & Cornelia Schmidt-Hattenberger & Ingo Sass & Michael Drews, 2023. "Influence of Reservoir Heterogeneity on Simultaneous Geothermal Energy Extraction and CO 2 Storage," Sustainability, MDPI, vol. 16(1), pages 1-23, December.
    11. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    12. Xiao-Hui Sun & Hongbin Yan & Mehrdad Massoudi & Zhi-Hua Chen & Wei-Tao Wu, 2018. "Numerical Simulation of Nanofluid Suspensions in a Geothermal Heat Exchanger," Energies, MDPI, vol. 11(4), pages 1-18, April.
    13. Kharseh, Mohamad & Altorkmany, Lobna & Al-Khawaja, Mohammed & Hassani, Ferri, 2015. "Analysis of the effect of global climate change on ground source heat pump systems in different climate categories," Renewable Energy, Elsevier, vol. 78(C), pages 219-225.
    14. Kim, Sunuk & Oh, Han Jin & Han, Sang Ju & Ko, Han Seo & Shin, Youhwan & Shin, Dong Ho, 2022. "Development of black-ice removal system with latent heat thermal energy storage and solar thermal collectors," Energy, Elsevier, vol. 244(PA).
    15. Tsubaki, Koutaro & Mitsutake, Yuichi, 2016. "Performance of ground-source heat exchangers using short residential foundation piles," Energy, Elsevier, vol. 104(C), pages 229-236.
    16. Bleicher, Alena & Gross, Matthias, 2016. "Geothermal heat pumps and the vagaries of subterranean geology: Energy independence at a household level as a real world experiment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 279-288.
    17. Nasir, Diana SNM & Pantua, Conrad Allan Jay & Zhou, Bochao & Vital, Becky & Calautit, John & Hughes, Ben, 2021. "Numerical analysis of an urban road pavement solar collector (U-RPSC) for heat island mitigation: Impact on the urban environment," Renewable Energy, Elsevier, vol. 164(C), pages 618-641.
    18. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    19. Qi, Zishu & Gao, Qing & Liu, Yan & Yan, Y.Y. & Spitler, Jeffrey D., 2014. "Status and development of hybrid energy systems from hybrid ground source heat pump in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 37-51.
    20. Yuan, Huazhi & Wang, Shuai & Wang, Chaohui & Song, Zhi & Li, Yanwei, 2022. "Design of piezoelectric device compatible with pavement considering traffic: Simulation, laboratory and on-site," Applied Energy, Elsevier, vol. 306(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2023:i:1:p:215-:d:1311075. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.