IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3287-d1117384.html
   My bibliography  Save this article

Supercapacitor Energy Storages in Hybrid Power Supplies for Frequency-Controlled Electric Drives: Review of Topologies and Automatic Control Systems

Author

Listed:
  • Polyakov Vladimir

    (Federal State Autonomous Educational Institution of Higher Education, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia)

  • Plotnikov Iurii

    (Federal State Autonomous Educational Institution of Higher Education, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia)

Abstract

This article provides an overview of the use of supercapacitor energy storage systems in adjustable AC drives for various purposes. The structures of the power section of combined (hybrid) power supplies for vehicle electric drives (hybrid electric vehicles and public transport vehicles) and general-purpose electric drives of an industrial grade (cranes, freight, and passenger lifts) are given. This review focuses on the problems inherent in conventional solutions adopted in the implementation of the power section, as well as the effect that can be obtained when using supercapacitor energy storage systems in controlled electric drives. The topologies of reversible DC/DC converters for supercapacitor energy storage devices are considered with a comparative assessment of their advantages and disadvantages, as well as their areas of application. This paper provides an overview of the structures of automatic control systems for supercapacitor energy storage devices. The composition and principles of regulating variables, the types of regulators used, and the criteria for setting regulation systems are analysed.

Suggested Citation

  • Polyakov Vladimir & Plotnikov Iurii, 2023. "Supercapacitor Energy Storages in Hybrid Power Supplies for Frequency-Controlled Electric Drives: Review of Topologies and Automatic Control Systems," Energies, MDPI, vol. 16(7), pages 1-27, April.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3287-:d:1117384
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3287/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3287/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    2. Diana Lemian & Florin Bode, 2022. "Battery-Supercapacitor Energy Storage Systems for Electrical Vehicles: A Review," Energies, MDPI, vol. 15(15), pages 1-13, August.
    3. Mostafa Kermani & Giuseppe Parise & Ben Chavdarian & Luigi Martirano, 2020. "Ultracapacitors for Port Crane Applications: Sizing and Techno-Economic Analysis," Energies, MDPI, vol. 13(8), pages 1-19, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hamed Jafari Kaleybar & Mostafa Golnargesi & Morris Brenna & Dario Zaninelli, 2023. "Hybrid Energy Storage System Taking Advantage of Electric Vehicle Batteries for Recovering Regenerative Braking Energy in Railway Station," Energies, MDPI, vol. 16(13), pages 1-24, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    3. Duy-Dinh Nguyen & The-Tiep Pham & Tat-Thang Le & Sewan Choi & Kazuto Yukita, 2023. "A Modulation Method for Three-Phase Dual-Active-Bridge Converters in Battery Charging Applications," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    4. Sarvaiya, Shradhdha & Ganesh, Sachin & Xu, Bin, 2021. "Comparative analysis of hybrid vehicle energy management strategies with optimization of fuel economy and battery life," Energy, Elsevier, vol. 228(C).
    5. Ekaterina Abramushkina & Assel Zhaksylyk & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level," Energies, MDPI, vol. 14(16), pages 1-21, August.
    6. Uvais Mustafa & Rishad Ahmed & Alan Watson & Patrick Wheeler & Naseer Ahmed & Parmjeet Dahele, 2022. "A Comprehensive Review of Machine-Integrated Electric Vehicle Chargers," Energies, MDPI, vol. 16(1), pages 1-25, December.
    7. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    8. Miroslaw Lewandowski & Marek Orzylowski, 2020. "Novel Time Method of Identification of Fractional Model Parameters of Supercapacitor," Energies, MDPI, vol. 13(11), pages 1-17, June.
    9. Srinath Belakavadi Sudarshan & Gopal Arunkumar, 2023. "Isolated DC-DC Power Converters for Simultaneous Charging of Electric Vehicle Batteries: Research Review, Design, High-Frequency Transformer Testing, Power Quality Concerns, and Future," Sustainability, MDPI, vol. 15(3), pages 1-71, February.
    10. Djamila Rekioua & Khoudir Kakouche & Abdulrahman Babqi & Zahra Mokrani & Adel Oubelaid & Toufik Rekioua & Abdelghani Azil & Enas Ali & Ali H. Kasem Alaboudy & Saad A. Mohamed Abdelwahab, 2023. "Optimized Power Management Approach for Photovoltaic Systems with Hybrid Battery-Supercapacitor Storage," Sustainability, MDPI, vol. 15(19), pages 1-30, September.
    11. Elangovan Devaraj & Peter K. Joseph & Thundil Karuppa Raj Rajagopal & Senthilarasu Sundaram, 2020. "Renewable Energy Powered Plugged-In Hybrid Vehicle Charging System for Sustainable Transportation," Energies, MDPI, vol. 13(8), pages 1-17, April.
    12. Stefania Cuoghi & Riccardo Mandrioli & Lorenzo Ntogramatzidis & Grandi Gabriele, 2020. "Multileg Interleaved Buck Converter for EV Charging: Discrete-Time Model and Direct Control Design," Energies, MDPI, vol. 13(2), pages 1-18, January.
    13. Dariusz Masłowski & Ewa Kulińska & Łukasz Krzewicki, 2023. "Alternative Methods of Replacing Electric Batteries in Public Transport Vehicles," Energies, MDPI, vol. 16(15), pages 1-22, August.
    14. Luiz Carlos Gomes Freitas & Marcelo Godoy Simoes & Paulo Peixoto Praça, 2023. "Power Electronics Converters for On-Board Electric Power Systems," Energies, MDPI, vol. 16(9), pages 1-2, April.
    15. Ioan-Sorin Sorlei & Nicu Bizon & Phatiphat Thounthong & Mihai Varlam & Elena Carcadea & Mihai Culcer & Mariana Iliescu & Mircea Raceanu, 2021. "Fuel Cell Electric Vehicles—A Brief Review of Current Topologies and Energy Management Strategies," Energies, MDPI, vol. 14(1), pages 1-29, January.
    16. Mohammad Shahjalal & Tamanna Shams & Moshammed Nishat Tasnim & Md Rishad Ahmed & Mominul Ahsan & Julfikar Haider, 2022. "A Critical Review on Charging Technologies of Electric Vehicles," Energies, MDPI, vol. 15(21), pages 1-26, November.
    17. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    18. Armel Asongu Nkembi & Paolo Cova & Emilio Sacchi & Emanuele Coraggioso & Nicola Delmonte, 2023. "A Comprehensive Review of Power Converters for E-Mobility," Energies, MDPI, vol. 16(4), pages 1-28, February.
    19. Sergey Goolak & Liliia Kondratieva & Ievgen Riabov & Vaidas Lukoševičius & Artūras Keršys & Rolandas Makaras, 2023. "Research and Optimization of Hybrid On-Board Energy Storage System of an Electric Locomotive for Quarry Rail Transport," Energies, MDPI, vol. 16(7), pages 1-19, April.
    20. Anthony Roy & François Auger & Jean-Christophe Olivier & Emmanuel Schaeffer & Bruno Auvity, 2020. "Design, Sizing, and Energy Management of Microgrids in Harbor Areas: A Review," Energies, MDPI, vol. 13(20), pages 1-24, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3287-:d:1117384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.