IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i16p4981-d614147.html
   My bibliography  Save this article

A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level

Author

Listed:
  • Ekaterina Abramushkina

    (Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Assel Zhaksylyk

    (Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Thomas Geury

    (Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Mohamed El Baghdadi

    (Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

  • Omar Hegazy

    (Mobility, Logistics and Automotive Technology Research Centre (MOBI), Department of Electrical Engineering and Energy Technology (ETEC), Faculty of Engineering, Vrije Universiteit Brussel (VUB), 1050 Brussel, Belgium
    Flanders Make, 3001 Heverlee, Belgium)

Abstract

The development of electric vehicles (EVs) is an important step towards clean and green cities. An electric powertrain provides power to the vehicle and consists of a charger, a battery, an inverter, and a motor as the main components. Supplied by a battery pack, the automotive inverter manages the power of the motor. EVs require a highly efficient inverter, which satisfies low cost, size, and weight requirements. One approach to meeting these requirements is to use the new wide-bandgap (WBG) semiconductors, which are being widely investigated in the industry as an alternative to silicon switches. WBG devices have superior intrinsic properties, such as high thermal flux, of up to 120 W/cm 2 (on average); junction temperature of 175–200 °C; blocking voltage limit of about 6.5 kV; switching frequency about 20-fold higher than that of Si; and up to 73% lower switching losses with a lower conduction voltage drop. This study presents a review of WBG-based inverter cooling systems to investigate trends in cooling techniques and changes associated with the use of WBG devices. The aim is to consider suitable cooling techniques for WBG inverters at different power levels.

Suggested Citation

  • Ekaterina Abramushkina & Assel Zhaksylyk & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "A Thorough Review of Cooling Concepts and Thermal Management Techniques for Automotive WBG Inverters: Topology, Technology and Integration Level," Energies, MDPI, vol. 14(16), pages 1-21, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4981-:d:614147
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/16/4981/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/16/4981/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sajib Chakraborty & Hai-Nam Vu & Mohammed Mahedi Hasan & Dai-Duong Tran & Mohamed El Baghdadi & Omar Hegazy, 2019. "DC-DC Converter Topologies for Electric Vehicles, Plug-in Hybrid Electric Vehicles and Fast Charging Stations: State of the Art and Future Trends," Energies, MDPI, vol. 12(8), pages 1-43, April.
    2. Giampieri, A. & Ling-Chin, J. & Ma, Z. & Smallbone, A. & Roskilly, A.P., 2020. "A review of the current automotive manufacturing practice from an energy perspective," Applied Energy, Elsevier, vol. 261(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    2. Yi-Gao Lv & Gao-Peng Zhang & Qiu-Wang Wang & Wen-Xiao Chu, 2022. "Thermal Management Technologies Used for High Heat Flux Automobiles and Aircraft: A Review," Energies, MDPI, vol. 15(21), pages 1-39, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boud Verbrugge & Mohammed Mahedi Hasan & Haaris Rasool & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2021. "Smart Integration of Electric Buses in Cities: A Technological Review," Sustainability, MDPI, vol. 13(21), pages 1-23, November.
    2. Rejaul Islam & S M Sajjad Hossain Rafin & Osama A. Mohammed, 2022. "Comprehensive Review of Power Electronic Converters in Electric Vehicle Applications," Forecasting, MDPI, vol. 5(1), pages 1-59, December.
    3. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    4. Fatigati, Fabio & Di Battista, Davide & Cipollone, Roberto, 2021. "Design improvement of volumetric pump for engine cooling in the transportation sector," Energy, Elsevier, vol. 231(C).
    5. Pi, Dawei & Xue, Pengyu & Wang, Weihua & Xie, Boyuan & Wang, Hongliang & Wang, Xianhui & Yin, Guodong, 2023. "Automotive platoon energy-saving: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Duy-Dinh Nguyen & The-Tiep Pham & Tat-Thang Le & Sewan Choi & Kazuto Yukita, 2023. "A Modulation Method for Three-Phase Dual-Active-Bridge Converters in Battery Charging Applications," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    7. Dai-Duong Tran & Sajib Chakraborty & Yuanfeng Lan & Mohamed El Baghdadi & Omar Hegazy, 2020. "NSGA-II-Based Codesign Optimization for Power Conversion and Controller Stages of Interleaved Boost Converters in Electric Vehicle Drivetrains," Energies, MDPI, vol. 13(19), pages 1-31, October.
    8. Albert, Max D.A. & Bennett, Katherine O. & Adams, Charlotte A. & Gluyas, Jon G., 2022. "Waste heat mapping: A UK study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    9. Hwa-Pyeong Park & Mina Kim & Jee-Hoon Jung, 2020. "A Comprehensive Overview in Control Algorithms for High Switching-Frequency LLC Resonant Converter," Energies, MDPI, vol. 13(17), pages 1-17, August.
    10. Sindu Daniarta & Piotr Kolasiński & Barbara Rogosz, 2022. "Waste Heat Recovery in Automotive Paint Shop via Organic Rankine Cycle and Thermal Energy Storage System—Selected Thermodynamic Issues," Energies, MDPI, vol. 15(6), pages 1-18, March.
    11. Shantanu Pardhi & Sajib Chakraborty & Dai-Duong Tran & Mohamed El Baghdadi & Steven Wilkins & Omar Hegazy, 2022. "A Review of Fuel Cell Powertrains for Long-Haul Heavy-Duty Vehicles: Technology, Hydrogen, Energy and Thermal Management Solutions," Energies, MDPI, vol. 15(24), pages 1-55, December.
    12. Karol Tucki, 2021. "A Computer Tool for Modelling CO 2 Emissions in Driving Tests for Vehicles with Diesel Engines," Energies, MDPI, vol. 14(2), pages 1-30, January.
    13. Haaris Rasool & Boud Verbrugge & Shahid Jaman & Ekaterina Abramushkina & Thomas Geury & Mohamed El Baghdadi & Omar Hegazy, 2022. "Design and Real-Time Implementation of a Control System for SiC Off-Board Chargers of Battery Electric Buses," Energies, MDPI, vol. 15(4), pages 1-19, February.
    14. Sarvaiya, Shradhdha & Ganesh, Sachin & Xu, Bin, 2021. "Comparative analysis of hybrid vehicle energy management strategies with optimization of fuel economy and battery life," Energy, Elsevier, vol. 228(C).
    15. Mohamed S. Elrefaey & Mohamed E. Ibrahim & Elsayed Tag Eldin & Hossam Youssef Hegazy & Samia Abdalfatah & Elwy E. EL-Kholy, 2022. "A Proposed Three-Phase Induction Motor Drive System Suitable for Golf Cars," Energies, MDPI, vol. 15(17), pages 1-22, September.
    16. Zhaohui Feng & Xinru Ding & Hua Zhang & Ying Liu & Wei Yan & Xiaoli Jiang, 2023. "An Energy Consumption Estimation Method for the Tool Setting Process in CNC Milling Based on the Modular Arrangement of Predetermined Time Standards," Energies, MDPI, vol. 16(20), pages 1-18, October.
    17. Meihang Zhang & Hua Zhang & Wei Yan & Zhigang Jiang & Shuo Zhu, 2023. "An Integrated Deep-Learning-Based Approach for Energy Consumption Prediction of Machining Systems," Sustainability, MDPI, vol. 15(7), pages 1-17, March.
    18. Uvais Mustafa & Rishad Ahmed & Alan Watson & Patrick Wheeler & Naseer Ahmed & Parmjeet Dahele, 2022. "A Comprehensive Review of Machine-Integrated Electric Vehicle Chargers," Energies, MDPI, vol. 16(1), pages 1-25, December.
    19. Ching-Ming Lai & Jiashen Teh & Yuan-Chih Lin & Yitao Liu, 2020. "Study of a Bidirectional Power Converter Integrated with Battery/Ultracapacitor Dual-Energy Storage," Energies, MDPI, vol. 13(5), pages 1-23, March.
    20. Miroslaw Lewandowski & Marek Orzylowski, 2020. "Novel Time Method of Identification of Fractional Model Parameters of Supercapacitor," Energies, MDPI, vol. 13(11), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:16:p:4981-:d:614147. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.