IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3017-d1107434.html
   My bibliography  Save this article

Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach

Author

Listed:
  • Shabarish Shankaran

    (Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India)

  • Tamilarasan Karuppiah

    (Department of Civil Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, Tamil Nadu, India)

  • Rajesh Banu Jeyakumar

    (Department of Biotechnology, Central University of Tamil Nadu, Thiruvarur 610005, Neelakudi, India)

  • Godvin Sharmila Vincent

    (Department of Civil Engineering, Mar Ephraem College of Engineering and Technology, Marthandam 629171, Tamil Nadu, India)

Abstract

In this study, a combined pretreatment method of sonication and alkali (KOH) liquefaction (SAL) was used to increase the production of biohydrogen from macroalgae ( Chaetomorpha antennina ) in an energy-efficient manner. Sonication liquefaction (SL) was accomplished by varying the sonic intensities from 10% to 70% and the pretreatment time from 5 to 60 min. The ideal liquefaction conditions in SL were determined to be 50% for sonic intensity, and 30 min of pretreatment time which produces liquefied organics (LO) release of 2650 mg/L. By adjusting the pH of the alkali (KOH) from 8 to 12, SAL was carried out under SL optimal conditions. With a liquefaction efficiency of 24.61% and LO release of 3200 mg/L, pH 11 was the best for effective macroalgal liquefaction in SAL. SAL (4500 kJ/kg TS) consumed less ultrasonic specific energy (USE) than SL (9000 kJ/kg TS). More VFA was produced in SAL (2160 mg/L) than SL (1070 mg/L). Compared to SL (120 mL H 2 /g COD/0.005 moles of H 2 /g COD), SAL produced the most biohydrogen of 141 mL H 2 /g COD/0.006 moles of H 2 /g COD. The combined pretreatment (SAL) increases the LO release, which ultimately results in an additional 15% increment in biohydrogen production compared to the SL, along with 44.4% of energy savings. Overall, SAL was determined to be energy efficient in biohydrogen production.

Suggested Citation

  • Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3017-:d:1107434
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Deng, Chen & Lin, Richen & Kang, Xihui & Wu, Benteng & Wall, David & Murphy, Jerry D., 2022. "Improvement in biohydrogen and volatile fatty acid production from seaweed through addition of conductive carbon materials depends on the properties of the conductive materials," Energy, Elsevier, vol. 239(PC).
    2. Tamilarasan, K. & Kavitha, S. & Selvam, Ammaiyappan & Rajesh Banu, J. & Yeom, Ick Tae & Nguyen, Dinh Duc & Saratale, Ganesh Dattatraya, 2018. "Cost-effective, low thermo-chemo disperser pretreatment for biogas production potential of marine macroalgae Chaetomorpha antennina," Energy, Elsevier, vol. 163(C), pages 533-545.
    3. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    4. Wang, Jianlong & Yin, Yanan, 2018. "Fermentative hydrogen production using various biomass-based materials as feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 284-306.
    5. Khan, Mohd Atiqueuzzaman & Ngo, Huu Hao & Guo, Wenshan & Liu, Yiwen & Zhang, Xinbo & Guo, Jianbo & Chang, Soon Woong & Nguyen, Dinh Duc & Wang, Jie, 2018. "Biohydrogen production from anaerobic digestion and its potential as renewable energy," Renewable Energy, Elsevier, vol. 129(PB), pages 754-768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuang Liu & Wenzhe Li & Guoxiang Zheng & Haiyan Yang & Longhai Li, 2020. "Optimization of Cattle Manure and Food Waste Co-Digestion for Biohydrogen Production in a Mesophilic Semi-Continuous Process," Energies, MDPI, vol. 13(15), pages 1-13, July.
    2. Dejene Tsegaye & Mohammed Mazharuddin Khan & Seyoum Leta, 2023. "Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
    3. Roopnarain, Ashira & Rama, Haripriya & Ndaba, Busiswa & Bello-Akinosho, Maryam & Bamuza-Pemu, Emomotimi & Adeleke, Rasheed, 2021. "Unravelling the anaerobic digestion ‘black box’: Biotechnological approaches for process optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    5. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    6. Shweta & Sergio C. Capareda & Baldev Raj Kamboj & Kamla Malik & Karmal Singh & Dalip Kumar Bhisnoi & Sandeep Arya, 2024. "Biomass Resources and Biofuel Technologies: A Focus on Indian Development," Energies, MDPI, vol. 17(2), pages 1-27, January.
    7. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    8. Tae-Hoon Kim & Dayeong Song & Jung-Sup Lee & Yeo-Myeong Yun, 2023. "Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts," Energies, MDPI, vol. 16(1), pages 1-11, January.
    9. Zhang, Zexi & Ding, Ke & Ma, Xiaojun & Tang, Shuai & Wang, Zixin & Lu, Haifeng & Jiang, Weizhong & Si, Buchun, 2023. "Hydrodynamic design of down-flow packed bed reactor regulated the biohydrogen production and microbial enrichment," Energy, Elsevier, vol. 271(C).
    10. Patel, Sanjay K.S. & Das, Devashish & Kim, Sun Chang & Cho, Byung-Kwan & Kalia, Vipin Chandra & Lee, Jung-Kul, 2021. "Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    11. Sun, Chihe & Liao, Qiang & Xia, Ao & Fu, Qian & Huang, Yun & Zhu, Xianqing & Zhu, Xun & Wang, Zhengxin, 2020. "Degradation and transformation of furfural derivatives from hydrothermal pre-treated algae and lignocellulosic biomass during hydrogen fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Armando Oliva & Stefano Papirio & Giovanni Esposito & Piet N. L. Lens, 2023. "Impact of Chemical and Physical Pretreatment on Methane Potential of Peanut Shells," Energies, MDPI, vol. 16(12), pages 1-15, June.
    13. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    14. Nikolaj Kaae Kirk & Clara Navarrete & Jakob Ellegaard Juhl & José Luis Martínez & Alessandra Procentese, 2021. "The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study," Energies, MDPI, vol. 14(3), pages 1-19, January.
    15. Singh, Neeraj Kumar & Singh, Rajesh, 2022. "Co-factors applicability in hydrogen production from rice straw hydrolysate in a bioelectrochemical system," Energy, Elsevier, vol. 255(C).
    16. Yiyang Liu & Jingluo Min & Xingyu Feng & Yue He & Jinze Liu & Yixiao Wang & Jun He & Hainam Do & Valérie Sage & Gang Yang & Yong Sun, 2020. "A Review of Biohydrogen Productions from Lignocellulosic Precursor via Dark Fermentation: Perspective on Hydrolysate Composition and Electron-Equivalent Balance," Energies, MDPI, vol. 13(10), pages 1-27, May.
    17. Chalima, Angelina & Hatzidaki, Angeliki & Karnaouri, Anthi & Topakas, Evangelos, 2019. "Integration of a dark fermentation effluent in a microalgal-based biorefinery for the production of high-added value omega-3 fatty acids," Applied Energy, Elsevier, vol. 241(C), pages 130-138.
    18. Moreira, F.S. & Rodrigues, M.S. & Sousa, L.M. & Batista, F.R.X. & Ferreira, J.S. & Cardoso, V.L., 2022. "Single-stage repeated batch cycles using co-culture of Enterobacter cloacae and purple non-sulfur bacteria for hydrogen production," Energy, Elsevier, vol. 239(PE).
    19. Karim, Ahasanul & Islam, M. Amirul & Mishra, Puranjan & Yousuf, Abu & Faizal, Che Ku Mohammad & Khan, Md. Maksudur Rahman, 2021. "Technical difficulties of mixed culture driven waste biomass-based biohydrogen production: Sustainability of current pretreatment techniques and future prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    20. Li, Kaiyu & Gao, Yitong & Zhang, Shengan & Liu, Guilian, 2022. "Study on the energy efficiency of bioethanol-based liquid hydrogen production process," Energy, Elsevier, vol. 238(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3017-:d:1107434. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.