IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i6p5544-d1103540.html
   My bibliography  Save this article

Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase

Author

Listed:
  • Dejene Tsegaye

    (Center for Environmental Science, College of Natural and Computational Science, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

  • Mohammed Mazharuddin Khan

    (Center for Environmental Science, College of Natural and Computational Science, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

  • Seyoum Leta

    (Center for Environmental Science, College of Natural and Computational Science, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia)

Abstract

In a two-phase anaerobic digestion process, enhanced biogas production and organic pollutant removal depend on the stability and performance of the hydrolytic–acidogenic and methanogenic phases. Additionally, the hydrolytic–acidogenic phase is a rate-limiting step, which calls for the further optimization of operating parameters. The objective of this study was to optimize the operating parameters of the hydrolytic–acidogenic reactor (HR) in the two-phase anaerobic digestion treating slaughterhouse wastewater. The experiment was carried using bench-scale sequential bioreactors. The hydrolytic–acidogenic reactor operating parameters were optimized for six different hydraulic retention times (HRTs) (6–1 day) and organic loading rates (OLRs) (894.41 ± 32.56–5366.43 ± 83.80 mg COD/L*day). The degree of hydrolysis and acidification were mainly influenced by lower HRT (higher OLR), and the highest values of hydrolysis and acidification were 63.92% and 53.26% at an HRT of 3 days, respectively. The findings indicated that, at steady state, the concentrations of soluble chemical oxygen demand (SCOD) and total volatile fatty acids (TVFAs) decrease as HRT decreases and OLR increases from HRTs of 3 to 1 day and 894.41–1788.81 mg COD/L*day, respectively, and increase as the HRT decreases from 6 to 4 days. The concentration of NH 4 + -N ranges from 278.67 to 369.46 mg/L, which is not in the range that disturbs the performance and stability of the hydrolytic acidogenic reactor. It was concluded that an HRT of 3 days and an ORL of 1788.81 mg COD/L*day were selected as optimal operating conditions for the high performance and stability of the two-phase anaerobic digestion of slaughterhouse wastewater in the hydrolytic–acidogenic reactor at a mesophilic temperature. The findings of this study can be applicable for other agro-process industry wastewater types with similar characteristics and biowaste for value addition and sustainable biowaste management and safe discharge.

Suggested Citation

  • Dejene Tsegaye & Mohammed Mazharuddin Khan & Seyoum Leta, 2023. "Optimization of Operating Parameters for Two-Phase Anaerobic Digestion Treating Slaughterhouse Wastewater for Biogas Production: Focus on Hydrolytic–Acidogenic Phase," Sustainability, MDPI, vol. 15(6), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5544-:d:1103540
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/6/5544/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/6/5544/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alemayehu Haddis & Adriaan de Geyter & Ilse Smets & Bart Van der Bruggen, 2014. "Wastewater management in Ethiopian higher learning institutions: functionality, sustainability and policy context," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 57(3), pages 369-383, March.
    2. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    3. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    4. Fernando Canul Bacab & Elda España Gamboa & Juan Enrique Ruiz Espinoza & Rosa M Leal-Bautista & Raúl Tapia Tussell & Jorge Domínguez Maldonado & Blondy Canto Canché & Liliana Alzate-Gaviria, 2020. "Two Phase Anaerobic Digestion System of Municipal Solid Waste by Utilizing Microaeration and Granular Activated Carbon," Energies, MDPI, vol. 13(4), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tawaf Ali Shah & Sabiha Khalid & Hiba-Allah Nafidi & Ahmad Mohammad Salamatullah & Mohammed Bourhia, 2023. "Sodium Hydroxide Hydrothermal Extraction of Lignin from Rice Straw Residue and Fermentation to Biomethane," Sustainability, MDPI, vol. 15(11), pages 1-15, May.
    2. Surya Pratap Singh & Meena Kumari Sharma & Shatrudhan Pandey & S. M. Mozammil Hasnain & Fahad M. Alqahtani & Faisal M. Alessa, 2023. "Enhanced Onsite Treatment of Domestic Wastewater Using an Integrated Settler-Based Biofilm Reactor with Efficient Biogas Generation," Sustainability, MDPI, vol. 15(16), pages 1-14, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdur Rawoof, Salma Aathika & Kumar, P. Senthil & Vo, Dai-Viet N. & Devaraj, Thiruselvi & Subramanian, Sivanesan, 2021. "Biohythane as a high potential fuel from anaerobic digestion of organic waste: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Amit Kumar Jaglan & Venkata Ravi Sankar Cheela & Mansi Vinaik & Brajesh Dubey, 2022. "Environmental Impact Evaluation of University Integrated Waste Management System in India Using Life Cycle Analysis," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    3. Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2022. "Recent Advances and Perspectives of Nanotechnology in Anaerobic Digestion: A New Paradigm towards Sludge Biodegradability," Sustainability, MDPI, vol. 14(12), pages 1-18, June.
    4. Georgia-Christina Mitraka & Konstantinos N. Kontogiannopoulos & Maria Batsioula & George F. Banias & Anastasios I. Zouboulis & Panagiotis G. Kougias, 2022. "A Comprehensive Review on Pretreatment Methods for Enhanced Biogas Production from Sewage Sludge," Energies, MDPI, vol. 15(18), pages 1-56, September.
    5. Shabarish Shankaran & Tamilarasan Karuppiah & Rajesh Banu Jeyakumar & Godvin Sharmila Vincent, 2023. "Statistical Optimization of Chemo Sonic Liquefaction in Macroalgae for Biohydrogen Generation—An Energy-Effective Approach," Energies, MDPI, vol. 16(7), pages 1-15, March.
    6. Tae-Hoon Kim & Dayeong Song & Jung-Sup Lee & Yeo-Myeong Yun, 2023. "Enhanced Methane Production from Pretreatment of Waste Activated Sludge by Economically Feasible Biocatalysts," Energies, MDPI, vol. 16(1), pages 1-11, January.
    7. Collins, B.A. & Birzer, C.H. & Harris, P.W. & Kidd, S.P. & McCabe, B.K. & Medwell, P.R., 2023. "Two-phase anaerobic digestion in leach bed reactors coupled to anaerobic filters: A review and the potential of biochar filters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    8. Joanna Kazimierowicz & Marcin Dębowski, 2022. "Aerobic Granular Sludge as a Substrate in Anaerobic Digestion—Current Status and Perspectives," Sustainability, MDPI, vol. 14(17), pages 1-24, August.
    9. Theresa Menzel & Peter Neubauer & Stefan Junne, 2020. "Role of Microbial Hydrolysis in Anaerobic Digestion," Energies, MDPI, vol. 13(21), pages 1-29, October.
    10. Kumar, Atul & Samadder, S.R., 2020. "Performance evaluation of anaerobic digestion technology for energy recovery from organic fraction of municipal solid waste: A review," Energy, Elsevier, vol. 197(C).
    11. Manuel García & Paula Oulego & Mario Díaz & Sergio Collado, 2021. "Non-Energetic Chemical Products by Fermentation of Hydrolyzed Sewage Sludge," Sustainability, MDPI, vol. 13(10), pages 1-37, May.
    12. Zamri, M.F.M.A. & Hasmady, Saiful & Akhiar, Afifi & Ideris, Fazril & Shamsuddin, A.H. & Mofijur, M. & Fattah, I. M. Rizwanul & Mahlia, T.M.I., 2021. "A comprehensive review on anaerobic digestion of organic fraction of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    13. Negri, Camilla & Ricci, Marina & Zilio, Massimo & D'Imporzano, Giuliana & Qiao, Wei & Dong, Renjie & Adani, Fabrizio, 2020. "Anaerobic digestion of food waste for bio-energy production in China and Southeast Asia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    14. Srisowmeya, G. & Chakravarthy, M. & Nandhini Devi, G., 2020. "Critical considerations in two-stage anaerobic digestion of food waste – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    15. Bedoić, Robert & Špehar, Ana & Puljko, Josip & Čuček, Lidija & Ćosić, Boris & Pukšec, Tomislav & Duić, Neven, 2020. "Opportunities and challenges: Experimental and kinetic analysis of anaerobic co-digestion of food waste and rendering industry streams for biogas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    16. Tirthankar Mukherjee & Eric Trably & Prasad Kaparaju, 2023. "Critical Assessment of Hydrogen and Methane Production from 1G and 2G Sugarcane Processing Wastes Using One-Stage and Two-Stage Anaerobic Digestion," Energies, MDPI, vol. 16(13), pages 1-22, June.
    17. Loganath, Radhakrishnan & Senophiyah-Mary, J., 2020. "Critical review on the necessity of bioelectricity generation from slaughterhouse industry waste and wastewater using different anaerobic digestion reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:6:p:5544-:d:1103540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.