IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2818-d1100727.html
   My bibliography  Save this article

An Ageing Test Standards Analysis on Thermoplastic Liners of Type IV Composite Hydrogen Storage Tanks

Author

Listed:
  • Jun Li

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

  • Rongrong Lv

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

  • Chunlin Gu

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

  • Yitao Liu

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

  • Jiepu Li

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

  • Xiang Li

    (China Special Equipment Inspection and Research Institute, Beijing 100029, China
    Key Laboratory of Safety of Hydrogen Energy Storage and Transportation Equipment for State Market Regulation, Beijing 100029, China)

Abstract

The liner of a carbon fiber fully reinforced composite tank with thermoplastic liner (type IV) works in a hydrogen environment with varying temperature and pressure profiles. The ageing performance of the thermoplastic liner may affect hydrogen permeability and the consequent storage capacity, degrade the mechanical properties, and even increase the leakage risks of type IV tanks. In this paper, both testing procedures and evaluation parameters of an ageing test in a hydrogen environment required in several standards are compared and analyzed. Hydrogen static exposure in a high-temperature condition with a constant temperature and pressure is suggested to be a reasonable way to accelerate the ageing reaction of thermoplastic materials. A total of 192 h is considered a superior ageing test duration to balance the test economy and safety. The ageing test temperature in the high-temperature condition is suggested as no lower than 85 °C, while the upper limit of test pressure is suggested to be 1.25 NWP. In addition, the hydrogen permeation coefficient and mechanical properties are recognized as important parameters in ageing performance evaluation. Considering the actual service conditions, the influence of temperature/pressure cycling, depressurization rate, and humidity on the ageing performance of thermoplastics in hydrogen are advised to be investigated experimentally.

Suggested Citation

  • Jun Li & Rongrong Lv & Chunlin Gu & Yitao Liu & Jiepu Li & Xiang Li, 2023. "An Ageing Test Standards Analysis on Thermoplastic Liners of Type IV Composite Hydrogen Storage Tanks," Energies, MDPI, vol. 16(6), pages 1-14, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2818-:d:1100727
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2818/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2818/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. McDowall, William & Eames, Malcolm, 2006. "Forecasts, scenarios, visions, backcasts and roadmaps to the hydrogen economy: A review of the hydrogen futures literature," Energy Policy, Elsevier, vol. 34(11), pages 1236-1250, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hyun Kyu Shin & Sung Kyu Ha, 2023. "A Review on the Cost Analysis of Hydrogen Gas Storage Tanks for Fuel Cell Vehicles," Energies, MDPI, vol. 16(13), pages 1-36, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andrew Chapman & Timothy Fraser & Melanie Dennis, 2019. "Investigating Ties between Energy Policy and Social Equity Research: A Citation Network Analysis," Social Sciences, MDPI, vol. 8(5), pages 1-18, April.
    2. Truffer, Bernhard & Schippl, Jens & Fleischer, Torsten, 2017. "Decentering technology in technology assessment: prospects for socio-technical transitions in electric mobility in Germany," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 34-48.
    3. Paul Timms & Miles Tight & David Watling, 2014. "Imagineering Mobility: Constructing Utopias for Future Urban Transport," Environment and Planning A, , vol. 46(1), pages 78-93, January.
    4. Medrano, J.A. & Potdar, I. & Melendez, J. & Spallina, V. & Pacheco-Tanaka, D.A. & van Sint Annaland, M. & Gallucci, F., 2018. "The membrane-assisted chemical looping reforming concept for efficient H2 production with inherent CO2 capture: Experimental demonstration and model validation," Applied Energy, Elsevier, vol. 215(C), pages 75-86.
    5. de Alcantara, Douglas Pedro & Martens, Mauro Luiz, 2019. "Technology Roadmapping (TRM): a systematic review of the literature focusing on models," Technological Forecasting and Social Change, Elsevier, vol. 138(C), pages 127-138.
    6. Alev Taskin Gumus & A. Yesim Yayla & Erkan Çelik & Aytac Yildiz, 2013. "A Combined Fuzzy-AHP and Fuzzy-GRA Methodology for Hydrogen Energy Storage Method Selection in Turkey," Energies, MDPI, vol. 6(6), pages 1-16, June.
    7. Fozer, Daniel & Owsianiak, Mikołaj & Hauschild, Michael Zwicky, 2025. "Quantifying environmental learning and scaling rates for prospective life cycle assessment of e-ammonia production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    8. Nocera, Silvio & Cavallaro, Federico, 2016. "The competitiveness of alternative transport fuels for CO2 emissions," Transport Policy, Elsevier, vol. 50(C), pages 1-14.
    9. Simon Shackley & Michael Thompson, 2012. "Lost in the mix: will the technologies of carbon dioxide capture and storage provide us with a breathing space as we strive to make the transition from fossil fuels to renewables?," Climatic Change, Springer, vol. 110(1), pages 101-121, January.
    10. Jhonathan Fernandes Torres Souza & Sergio Almeida Pacca, 2019. "How far can low-carbon energy scenarios reach based on proven technologies?," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 24(5), pages 687-705, June.
    11. Alex YiHou Huang & Chiao-Ming Cheng & Wen-Cheng Hu & Chih-Chun Chen, 2011. "Relationship between Crude Oil Prices and Stock Prices of Alternative Energy Companies with Recent Evidence," Economics Bulletin, AccessEcon, vol. 31(3), pages 2434-2443.
    12. Park, Sang Yong & Kim, Jong Wook & Lee, Duk Hee, 2011. "Development of a market penetration forecasting model for Hydrogen Fuel Cell Vehicles considering infrastructure and cost reduction effects," Energy Policy, Elsevier, vol. 39(6), pages 3307-3315, June.
    13. Sabine van Rooij & Wim Timmermans & Onno Roosenschoon & Saskia Keesstra & Marjolein Sterk & Bas Pedroli, 2020. "Landscape-Based Visions as Powerful Boundary Objects in Spatial Planning: Lessons from Three Dutch Projects," Land, MDPI, vol. 10(1), pages 1-14, December.
    14. Alizadeh, Reza & Lund, Peter D. & Soltanisehat, Leili, 2020. "Outlook on biofuels in future studies: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    15. van Ruijven, Bas & Hari, Lakshmikanth & van Vuuren, Detlef P. & de Vries, Bert, 2008. "The potential role of hydrogen energy in India and Western Europe," Energy Policy, Elsevier, vol. 36(5), pages 1649-1665, May.
    16. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2023. "Socio-technical barriers to domestic hydrogen futures: Repurposing pipelines, policies, and public perceptions," Applied Energy, Elsevier, vol. 336(C).
    17. Ren, Jingzheng & Gao, Suzhao & Tan, Shiyu & Dong, Lichun, 2015. "Hydrogen economy in China: Strengths–weaknesses–opportunities–threats analysis and strategies prioritization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1230-1243.
    18. Shah, Imran Hussain & Hiles, Charlie & Morley, Bruce, 2018. "How do oil prices, macroeconomic factors and policies affect the market for renewable energy?," Applied Energy, Elsevier, vol. 215(C), pages 87-97.
    19. Beata Poteralska, 2021. "Support for the Development of Technological Innovations at an R&D Organisation," Sustainability, MDPI, vol. 13(22), pages 1-17, November.
    20. Hughes, Nick & Strachan, Neil, 2010. "Methodological review of UK and international low carbon scenarios," Energy Policy, Elsevier, vol. 38(10), pages 6056-6065, October.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2818-:d:1100727. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.