IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2471-d1088273.html
   My bibliography  Save this article

Optimization of Setting Angle Distribution to Suppress Hump Characteristic in Pump Turbine

Author

Listed:
  • Yonglin Qin

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Deyou Li

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Hongjie Wang

    (School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Xianzhu Wei

    (State Key Laboratory of Hydro-Power Equipment, Harbin Institute of Large Electrical Machinery, Harbin 150040, China)

Abstract

Pump turbines play a quite important role of peak-valley shifting in the grid, and the hump margin is a critical criterion related to the safety and stability of operation in pump mode. Aiming at investigating the influence of runner outlet setting angle distribution on hump performance of a pump turbine, three runners with different linear distributions of setting angle at outlet were proposed, and the corresponding hump performance comparison was analyzed numerically through the SST k - ω turbulent model. The numerical result shows that, compared to the experiment, the relative errors of all simulated performances (energy characteristic, torque characteristic, and efficiency) were within 3%. Moreover, it was found that setting angle distribution modes could lead to a remarkably different performance in the hump region and, for the runner whose setting angle at shroud was 10° larger than that at hub, the hump safety margin could be increased from 4% to 4.5%. Thereafter, the corresponding mechanisms including energy input and hydraulic loss were investigated through the Euler head theory and the entropy method, respectively. It was found that hydraulic loss distribution played a more important role than the input energy on controlling hump performance. Moreover, for the runner with the largest hump margin, the hydraulic loss was distributed more evenly in the decreasing discharge direction, contributing to the elimination of hump performance. In addition, hydraulic loss distribution was calculated through local entropy production rate (LEPR) method. For all proposed runners, when the pump turbine entered the hump region from a normal operation point, the hydraulic loss was mainly concentrated in vaneless areas and guide/stay vane channels, while the runner with a large setting angle at shroud could better control the hydraulic loss distribution in both the spatial location and the discharge varying direction, increasing the hump margin. The design method presented in our paper is more likely to be applied in engineering applications.

Suggested Citation

  • Yonglin Qin & Deyou Li & Hongjie Wang & Xianzhu Wei, 2023. "Optimization of Setting Angle Distribution to Suppress Hump Characteristic in Pump Turbine," Energies, MDPI, vol. 16(5), pages 1-18, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2471-:d:1088273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2471/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2471/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, Deyou & Chang, Hong & Zuo, Zhigang & Wang, Hongjie & Li, Zhenggui & Wei, Xianzhu, 2020. "Experimental investigation of hysteresis on pump performance characteristics of a model pump-turbine with different guide vane openings," Renewable Energy, Elsevier, vol. 149(C), pages 652-663.
    2. Yong Liu & Hongjuan Ran & Dezhong Wang, 2020. "Research on Groove Method to Suppress Stall in Pump Turbine," Energies, MDPI, vol. 13(15), pages 1-13, July.
    3. Zhu, Baoshan & Wang, Xuhe & Tan, Lei & Zhou, Dongyue & Zhao, Yue & Cao, Shuliang, 2015. "Optimization design of a reversible pump–turbine runner with high efficiency and stability," Renewable Energy, Elsevier, vol. 81(C), pages 366-376.
    4. Li, Deyou & Song, Yechen & Lin, Song & Wang, Hongjie & Qin, Yonglin & Wei, Xianzhu, 2021. "Effect mechanism of cavitation on the hump characteristic of a pump-turbine," Renewable Energy, Elsevier, vol. 167(C), pages 369-383.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Kaijie & Wang, Shuli & Meng, Puyu & Wang, Chengpeng & Li, Yuhai & Zheng, Wenxian & Liu, Jun & Kou, Jiawen, 2023. "Strategies employed in the design and optimization of pump as turbine runner," Renewable Energy, Elsevier, vol. 216(C).
    2. Li, Deyou & Qin, Yonglin & Wang, Jianpeng & Zhu, Yutong & Wang, Hongjie & Wei, Xianzhu, 2022. "Optimization of blade high-pressure edge to reduce pressure fluctuations in pump-turbine hump region," Renewable Energy, Elsevier, vol. 181(C), pages 24-38.
    3. Yong Liu & Dezhong Wang & Hongjuan Ran & Rui Xu & Yu Song & Bo Gong, 2021. "RANS CFD Analysis of Hump Formation Mechanism in Double-Suction Centrifugal Pump under Part Load Condition," Energies, MDPI, vol. 14(20), pages 1-17, October.
    4. Ma, Zhe & Zhu, Baoshan, 2020. "Pressure fluctuations in vaneless space of pump-turbines with large blade lean runners in the S- shaped region," Renewable Energy, Elsevier, vol. 153(C), pages 1283-1295.
    5. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang & Yang, Weibin, 2023. "Comprehensive hydraulic performance improvement in a pump-turbine: An experimental investigation," Energy, Elsevier, vol. 284(C).
    6. Zhang, Han & Gao, Xueping & Sun, Bowen & Qin, Zixue & Zhu, Hongtao, 2020. "Parameter analysis and performance optimization for the vertical pipe intake-outlet of a pumped hydro energy storage station," Renewable Energy, Elsevier, vol. 162(C), pages 1499-1518.
    7. Chen, Zhenmu & Jiang, Zhenyu & Chen, Shuai & Zhang, Wenwu & Zhu, Baoshan, 2023. "Experimental and numerical study on flow instability of pump-turbine under runaway conditions," Renewable Energy, Elsevier, vol. 210(C), pages 335-345.
    8. Sergey Skripkin & Zhigang Zuo & Mikhail Tsoy & Pavel Kuibin & Shuhong Liu, 2022. "Oscillation of Cavitating Vortices in Draft Tubes of a Simplified Model Turbine and a Model Pump–Turbine," Energies, MDPI, vol. 15(8), pages 1-18, April.
    9. Zhang, Xinbiao & Xie, Yudong & Han, Jiazhen & Wang, Yong, 2022. "Design of control valve with low energy consumption based on Isight platform," Energy, Elsevier, vol. 239(PD).
    10. Yuan, Zhiyi & Zhang, Yongxue & Zhang, Jinya & Zhu, Jianjun, 2021. "Experimental studies of unsteady cavitation at the tongue of a pump-turbine in pump mode," Renewable Energy, Elsevier, vol. 177(C), pages 1265-1281.
    11. Zhang, Wenwu & Chen, Zhenmu & Zhu, Baoshan & Zhang, Fei, 2020. "Pressure fluctuation and flow instability in S-shaped region of a reversible pump-turbine," Renewable Energy, Elsevier, vol. 154(C), pages 826-840.
    12. Lijian Shi & Jun Zhu & Li Wang & Shiji Chu & Fangping Tang & Yan Jin, 2021. "Comparative Analysis of Strength and Modal Characteristics of a Full Tubular Pump and an Axial Flow Pump Impellers Based on Fluid-Structure Interaction," Energies, MDPI, vol. 14(19), pages 1-18, October.
    13. Zijie Wang & Baoshan Zhu & Xuhe Wang & Daqing Qin, 2017. "Pressure Fluctuations in the S-Shaped Region of a Reversible Pump-Turbine," Energies, MDPI, vol. 10(1), pages 1-13, January.
    14. Sebastián Leguizamón & François Avellan, 2020. "Open-Source Implementation and Validation of a 3D Inverse Design Method for Francis Turbine Runners," Energies, MDPI, vol. 13(8), pages 1-21, April.
    15. Wei Yang & Benqing Liu & Ruofu Xiao, 2019. "Three-Dimensional Inverse Design Method for Hydraulic Machinery," Energies, MDPI, vol. 12(17), pages 1-19, August.
    16. Chen, Sheng & Wang, Jing & Zhang, Jian & Yu, Xiaodong & He, Wei, 2020. "Transient behavior of two-stage load rejection for multiple units system in pumped storage plants," Renewable Energy, Elsevier, vol. 160(C), pages 1012-1022.
    17. Qin, Yonglin & Li, Deyou & Wang, Hongjie & Liu, Zhansheng & Wei, Xianzhu & Wang, Xiaohang, 2022. "Multi-objective optimization design on high pressure side of a pump-turbine runner with high efficiency," Renewable Energy, Elsevier, vol. 190(C), pages 103-120.
    18. Linhai Liu & Baoshan Zhu & Li Bai & Xiaobing Liu & Yue Zhao, 2017. "Parametric Design of an Ultrahigh-Head Pump-Turbine Runner Based on Multiobjective Optimization," Energies, MDPI, vol. 10(8), pages 1-16, August.
    19. Zhiyan Yang & Yongguang Cheng & Ke Liu & Xiaoxia Hou & Xiaoxi Zhang & Xi Wang & Jinghuan Ding, 2021. "Three-Dimensional CFD Simulations of Start-Up Processes of a Pump-Turbine Considering Governor Regulation," Energies, MDPI, vol. 14(24), pages 1-19, December.
    20. Raluca Gabriela Iovănel & Arash Soltani Dehkharqani & Diana Maria Bucur & Michel Jose Cervantes, 2022. "Numerical Simulation and Experimental Validation of a Kaplan Prototype Turbine Operating on a Cam Curve," Energies, MDPI, vol. 15(11), pages 1-24, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2471-:d:1088273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.