IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2208-d1079731.html
   My bibliography  Save this article

The Impact of Windows Replacement on Airtightness and Energy Consumption of a Single Apartment in a Multi-Family Residential Building in Montenegro: A Case Study

Author

Listed:
  • Esad Tombarević

    (Faculty of Mechanical Engineering, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro)

  • Igor Vušanović

    (Faculty of Mechanical Engineering, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro)

  • Milan Šekularac

    (Faculty of Mechanical Engineering, University of Montenegro, Džordža Vašingtona bb, 81000 Podgorica, Montenegro)

Abstract

One of the important factors influencing the thermal performance of buildings is the leakage of the envelope. When it comes to Montenegro, although there is a formal airtightness requirement, air permeability tests are not mandatory and therefore there is a lack of data in this regard. This paper reports the results of fan pressurization tests on a single apartment in a multi-family residential building before and after replacing the windows. The replacement of old wooden windows with new UPVC ones, provided that the installation is carefully supervised, proved to be an effective air tightening measure, as it resulted in a reduction of air change rate at the reference building pressure from 6.25 h −1 to 0.77 h −1 , or by nearly 90%. The energy impact of air leakage was evaluated using the national software for calculating the energy performance of buildings based on the DIN V 18599 methodology. Calculations showed that by reducing infiltration, significant energy savings for heating can be achieved, while savings for cooling are practically negligible. Savings in relative terms were greater when the façade walls were thermally insulated and when the building was located in a colder climate zone. Savings in delivered energy ranged from 13 to 25 kWh/m 2 ·year, depending on the climate zone.

Suggested Citation

  • Esad Tombarević & Igor Vušanović & Milan Šekularac, 2023. "The Impact of Windows Replacement on Airtightness and Energy Consumption of a Single Apartment in a Multi-Family Residential Building in Montenegro: A Case Study," Energies, MDPI, vol. 16(5), pages 1-16, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2208-:d:1079731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2208/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2208/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Romana D’Ambrosio Alfano & Marco Dell’Isola & Giorgio Ficco & Boris Igor Palella & Giuseppe Riccio, 2016. "Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit," Sustainability, MDPI, vol. 8(10), pages 1-9, September.
    2. Jesús Feijó-Muñoz & Irene Poza-Casado & Roberto Alonso González-Lezcano & Cristina Pardal & Víctor Echarri & Rafael Assiego De Larriva & Jesica Fernández-Agüera & María Jesús Dios-Viéitez & Víctor Jos, 2018. "Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study," Energies, MDPI, vol. 11(4), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jesica Fernández-Agüera & Samuel Domínguez-Amarillo & Miguel Ángel Campano, 2019. "Characterising Draught in Mediterranean Multifamily Housing," Sustainability, MDPI, vol. 11(8), pages 1-18, April.
    2. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    3. Valdas Paukštys & Gintaris Cinelis & Jūratė Mockienė & Mindaugas Daukšys, 2021. "Airtightness and Heat Energy Loss of Mid-Size Terraced Houses Built of Different Construction Materials," Energies, MDPI, vol. 14(19), pages 1-23, October.
    4. Mohammad Arar & Chuloh Jung, 2021. "Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates," IJERPH, MDPI, vol. 18(22), pages 1-19, November.
    5. Belen Moreno Santamaria & Fernando del Ama Gonzalo & Danielle Pinette & Roberto-Alonso Gonzalez-Lezcano & Benito Lauret Aguirregabiria & Juan A. Hernandez Ramos, 2020. "Application and Validation of a Dynamic Energy Simulation Tool: A Case Study with Water Flow Glazing Envelope," Energies, MDPI, vol. 13(12), pages 1-20, June.
    6. Maria-Mar Fernandez-Antolin & José-Manuel del-Río & Fernando del Ama Gonzalo & Roberto-Alonso Gonzalez-Lezcano, 2020. "The Relationship between the Use of Building Performance Simulation Tools by Recent Graduate Architects and the Deficiencies in Architectural Education," Energies, MDPI, vol. 13(5), pages 1-20, March.
    7. Carolina Aparicio-Fernández & José-Luis Vivancos & Paula Cosar-Jorda & Richard A. Buswell, 2019. "Energy Modelling and Calibration of Building Simulations: A Case Study of a Domestic Building with Natural Ventilation," Energies, MDPI, vol. 12(17), pages 1-13, August.
    8. Leopold Škerget & António Tadeu & João Almeida, 2021. "Unsteady Coupled Moisture and Heat Energy Transport through an Exterior Wall Covered with Vegetation," Energies, MDPI, vol. 14(15), pages 1-26, July.
    9. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Sonia Cesteros-García & Roberto Alonso González-Lezcano, 2020. "Bad Air Can Also Kill: Residential Indoor Air Quality and Pollutant Exposure Risk during the COVID-19 Crisis," IJERPH, MDPI, vol. 17(19), pages 1-33, September.
    10. Alexander Martín-Garín & José Antonio Millán-García & Juan María Hidalgo-Betanzos & Rufino Javier Hernández-Minguillón & Abderrahmane Baïri, 2020. "Airtightness Analysis of the Built Heritage–Field Measurements of Nineteenth Century Buildings through Blower Door Tests," Energies, MDPI, vol. 13(24), pages 1-28, December.
    11. Manuel J. Carretero-Ayuso & Carlos E. Rodríguez-Jiménez & David Bienvenido-Huertas & Juan Moyano, 2020. "Cataloguing of the Defects Existing in Aluminium Window Frames and Their Recurrence According to Pluvio-Climatic Zones," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    12. Zezhou Wu & Lei Liu & Shenghan Li & Hao Wang, 2020. "Investigating the Crucial Aspects of Developing a Healthy Dormitory based on Maslow’s Hierarchy of Needs—A Case Study of Shenzhen," IJERPH, MDPI, vol. 17(5), pages 1-15, February.
    13. Evelina Di Corso & Tania Cerquitelli & Daniele Apiletti, 2018. "METATECH: METeorological Data Analysis for Thermal Energy CHaracterization by Means of Self-Learning Transparent Models," Energies, MDPI, vol. 11(6), pages 1-24, May.
    14. Valdemaras Geležiūnas & Karolis Banionis & Raimondas Bliūdžius & Valdas Paukštys & Jurga Kumžienė, 2020. "Analysis of Air Permeability of Insulated Masonry Walls," Energies, MDPI, vol. 13(10), pages 1-16, May.
    15. Zhiqiang Wang & Qi Tian & Jie Jia, 2021. "Numerical Study on Performance Optimization of an Energy-Saving Insulated Window," Sustainability, MDPI, vol. 13(2), pages 1-25, January.
    16. Echarri-Iribarren, Victor & Echarri-Iribarren, Fernando & Rizo-Maestre, Carlos, 2019. "Ceramic panels versus aluminium in buildings: Energy consumption and environmental impact assessment with a new methodology," Applied Energy, Elsevier, vol. 233, pages 959-974.
    17. Małgorzata Fedorczak-Cisak & Elżbieta Radziszewska-Zielina & Bożena Orlik-Kożdoń & Tomasz Steidl & Tadeusz Tatara, 2020. "Analysis of the Thermal Retrofitting Potential of the External Walls of Podhale’s Historical Timber Buildings in the Aspect of the Non-Deterioration of Their Technical Condition," Energies, MDPI, vol. 13(18), pages 1-35, September.
    18. Jesús Feijó-Muñoz & Irene Poza-Casado & Roberto Alonso González-Lezcano & Cristina Pardal & Víctor Echarri & Rafael Assiego De Larriva & Jesica Fernández-Agüera & María Jesús Dios-Viéitez & Víctor Jos, 2018. "Methodology for the Study of the Envelope Airtightness of Residential Buildings in Spain: A Case Study," Energies, MDPI, vol. 11(4), pages 1-20, March.
    19. Samuel Domínguez-Amarillo & Jesica Fernández-Agüera & Miguel Ángel Campano & Ignacio Acosta, 2019. "Effect of Airtightness on Thermal Loads in Legacy Low-Income Housing," Energies, MDPI, vol. 12(9), pages 1-14, May.
    20. Joaquín Torres-Ramo & Purificación González-Martínez & Nerea Arriazu-Ramos & Ana Sánchez-Ostiz, 2020. "Influence of the Water Vapour Permeability of Airtight Sheets on the Behaviour of Facade," Sustainability, MDPI, vol. 12(24), pages 1-18, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2208-:d:1079731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.