IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i18p7398-d410982.html
   My bibliography  Save this article

Cataloguing of the Defects Existing in Aluminium Window Frames and Their Recurrence According to Pluvio-Climatic Zones

Author

Listed:
  • Manuel J. Carretero-Ayuso

    (Musaat Foundation and Polytechnic College, University of Extremadura, 10004 Cáceres, Spain)

  • Carlos E. Rodríguez-Jiménez

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • David Bienvenido-Huertas

    (Department of Building Construction II, University of Seville, 41012 Seville, Spain)

  • Juan Moyano

    (Department of Graphical Expression and Building Engineering, University of Seville, 41012 Seville, Spain)

Abstract

The sustainability of building envelopes is affected by its windows, since these establish the connection/separation between the indoor rooms and the external environment. They can also lead to problems if they do not offer sufficient protection against external agents. The data source in this research is unprecedented, as it is based on records of court sentences. There is a significant number of cases (1615), which provides high representativeness for the functional reality of windows. The methodology that was developed classifies the defects and the causes that were found, also analysing correspondence with their recurrence according to aspects of climatological location. In the results, the cases pertaining to water infiltration, air permeability and humidity by condensation are highlighted. This study provides a vision that categorizes problems related to aluminium windows that may be useful for future interventions by agents participating in the construction process.

Suggested Citation

  • Manuel J. Carretero-Ayuso & Carlos E. Rodríguez-Jiménez & David Bienvenido-Huertas & Juan Moyano, 2020. "Cataloguing of the Defects Existing in Aluminium Window Frames and Their Recurrence According to Pluvio-Climatic Zones," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7398-:d:410982
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/18/7398/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/18/7398/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesca Romana D’Ambrosio Alfano & Marco Dell’Isola & Giorgio Ficco & Boris Igor Palella & Giuseppe Riccio, 2016. "Experimental Air-Tightness Analysis in Mediterranean Buildings after Windows Retrofit," Sustainability, MDPI, vol. 8(10), pages 1-9, September.
    2. Lucchi, Elena, 2018. "Applications of the infrared thermography in the energy audit of buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3077-3090.
    3. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    4. Michael Gruner & Barbara Szybinska Matusiak, 2018. "A Novel Dynamic Insulation System for Windows," Sustainability, MDPI, vol. 10(8), pages 1-12, August.
    5. Tatjana Vilutiene & Česlovas Ignatavičius, 2018. "Towards Sustainable Renovation: Key Performance Indicators for Quality Monitoring," Sustainability, MDPI, vol. 10(6), pages 1-16, June.
    6. Hee, W.J. & Alghoul, M.A. & Bakhtyar, B. & Elayeb, OmKalthum & Shameri, M.A. & Alrubaih, M.S. & Sopian, K., 2015. "The role of window glazing on daylighting and energy saving in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 323-343.
    7. Bokyoung Koo & Keonho Lee & Youngsub An & Kyudong Lee, 2017. "Solar Heat Gain Reduction of Ventilated Double Skin Windows without a Shading Device," Sustainability, MDPI, vol. 10(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sunkuk Kim, 2021. "Technology and Management for Sustainable Buildings and Infrastructures," Sustainability, MDPI, vol. 13(16), pages 1-3, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoe Mayer & Julia Heuer & Rebekka Volk & Frank Schultmann, 2021. "Aerial Thermographic Image-Based Assessment of Thermal Bridges Using Representative Classifications and Calculations," Energies, MDPI, vol. 14(21), pages 1-43, November.
    2. Liu, Changyu & Wu, Yangyang & Bian, Ji & Li, Dong & Liu, Xiaoyan, 2018. "Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof," Applied Energy, Elsevier, vol. 212(C), pages 151-161.
    3. Michaux, Ghislain & Greffet, Rémy & Salagnac, Patrick & Ridoret, Jean-Baptiste, 2019. "Modelling of an airflow window and numerical investigation of its thermal performances by comparison to conventional double and triple-glazed windows," Applied Energy, Elsevier, vol. 242(C), pages 27-45.
    4. Karolis Banionis & Jurga Kumžienė & Arūnas Burlingis & Juozas Ramanauskas & Valdas Paukštys, 2021. "The Changes in Thermal Transmittance of Window Insulating Glass Units Depending on Outdoor Temperatures in Cold Climate Countries," Energies, MDPI, vol. 14(6), pages 1-22, March.
    5. Jesica Fernández-Agüera & Samuel Dominguez-Amarillo & Marco Fornaciari & Fabio Orlandi, 2019. "TVOCs and PM 2.5 in Naturally Ventilated Homes: Three Case Studies in a Mild Climate," Sustainability, MDPI, vol. 11(22), pages 1-22, November.
    6. Shariq, M. Hasan & Hughes, Ben Richard, 2020. "Revolutionising building inspection techniques to meet large-scale energy demands: A review of the state-of-the-art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
    7. Blanca Tejedor & Eva Barreira & Vasco Peixoto de Freitas & Tomasz Kisilewicz & Katarzyna Nowak-Dzieszko & Umberto Berardi, 2020. "Impact of Stationary and Dynamic Conditions on the U-Value Measurements of Heavy-Multi Leaf Walls by Quantitative IRT," Energies, MDPI, vol. 13(24), pages 1-19, December.
    8. Seok-Hyun Kim & Hakgeun Jeong & Soo Cho, 2019. "A Study on Changes of Window Thermal Performance by Analysis of Physical Test Results in Korea," Energies, MDPI, vol. 12(20), pages 1-17, October.
    9. Rasooli, Arash & Itard, Laure, 2019. "In-situ rapid determination of walls’ thermal conductivity, volumetric heat capacity, and thermal resistance, using response factors," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    10. Rafael Herrera-Limones & Ángel Luis León-Rodríguez & Álvaro López-Escamilla, 2019. "Solar Decathlon Latin America and Caribbean: Comfort and the Balance between Passive and Active Design," Sustainability, MDPI, vol. 11(13), pages 1-17, June.
    11. Singh, Ramkishore & Lazarus, I.J. & Kishore, V.V.N., 2015. "Effect of internal woven roller shade and glazing on the energy and daylighting performances of an office building in the cold climate of Shillong," Applied Energy, Elsevier, vol. 159(C), pages 317-333.
    12. Lee, Junghun & Kim, Jeonggook & Song, Doosam & Kim, Jonghun & Jang, Cheolyong, 2017. "Impact of external insulation and internal thermal density upon energy consumption of buildings in a temperate climate with four distinct seasons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1081-1088.
    13. Mohammad Arar & Chuloh Jung, 2021. "Improving the Indoor Air Quality in Nursery Buildings in United Arab Emirates," IJERPH, MDPI, vol. 18(22), pages 1-19, November.
    14. Takahiro Kimura & Tao Zhang & Hiroatsu Fukuda, 2019. "A Proposal for the Development of a Building Management System for Extending the Lifespan of Housing Complexes in Japan," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    15. Shaik, Saboor & Maduru, Venkata Ramana & Kontoleon, Karolos J. & Arıcı, Müslüm & Gorantla, Kirankumar & Afzal, Asif, 2022. "Building glass retrofitting strategies in hot and dry climates: Cost savings on cooling, diurnal lighting, color rendering, and payback timeframes," Energy, Elsevier, vol. 243(C).
    16. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    17. Qiu, Changyu & Yang, Hongxing, 2020. "Daylighting and overall energy performance of a novel semi-transparent photovoltaic vacuum glazing in different climate zones," Applied Energy, Elsevier, vol. 276(C).
    18. Herie Park, 2020. "Human Comfort-Based-Home Energy Management for Demand Response Participation," Energies, MDPI, vol. 13(10), pages 1-15, May.
    19. Kheira Anissa Tabet Aoul & Rahma Hagi & Rahma Abdelghani & Monaya Syam & Boshra Akhozheya, 2021. "Building Envelope Thermal Defects in Existing and Under-Construction Housing in the UAE; Infrared Thermography Diagnosis and Qualitative Impacts Analysis," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    20. Chen, C.Q. & Diao, Y.H. & Zhao, Y.H. & Wang, Z.Y. & Zhu, T.T. & Wang, T.Y. & Liang, L., 2021. "Numerical evaluation of the thermal performance of different types of double glazing flat-plate solar air collectors," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:18:p:7398-:d:410982. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.