IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1780-d1064669.html
   My bibliography  Save this article

Relationship between Odor Adsorption Ability and Physical–Hydraulic Properties of Torrefied Biomass: Initial Study

Author

Listed:
  • Łukasz Sobol

    (Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Chełmońskiego St. 37a, 51-630 Wroclaw, Poland)

  • Jacek Łyczko

    (Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 53-375 Wrocław, Poland)

  • Arkadiusz Dyjakon

    (Department of Applied Bioeconomy, Wroclaw University of Environmental and Life Sciences, Chełmońskiego St. 37a, 51-630 Wroclaw, Poland)

  • Ryszard Sroczyński

    (Faculty of Environmental Science and Technology, Wroclaw University of Environmental and Life Sciences, 50-363 Wroclaw, Poland)

Abstract

Various techniques are implemented to reduce odor emission due to their potential multi-source nature. One modern approach is the use of thermochemically processed biomass to eliminate odors. Compared with raw biomass, processed biomass is characterized by greater porosity and an expanded specific surface. In these laboratory experiments, adsorption tests for a mixture of indole, 2,3-dimethylpyrazine, and 2,3,5-trimethylpyrazine are carried out using torreficates produced from biomass from the agri-food industry (walnut shells, orange peels, peach stones, and apple wood chips). This research is focused on the determination of the correlation between the physical-hydraulic properties of the torreficates and their ability to reduce the odors simulated by the selected compounds. The results indicate that 2,3-dimethylpyrazine and 2,3,5-trimethylpyrazine are not detected in any of the investigated low-temperature biochars. However, indole is detected in most materials, and its most significant quantities are adsorbed on torreficates made of orange peels (45.64 µg·mL −1 ± 40.02 µg·mL −1 ) and peach stones (61.26 µg·mL −1 ± 49.55 µg·mL −1 ). The performed analysis reveals that the highest correlation with the ability to adsorb indole is found for the average pore size (r = 0.66) and specific density (r = −0.63) as well as the content of fixed carbon (r = 0.66), which may prove the importance of physical-hydraulic properties in odor sorption by low-temperature torreficates.

Suggested Citation

  • Łukasz Sobol & Jacek Łyczko & Arkadiusz Dyjakon & Ryszard Sroczyński, 2023. "Relationship between Odor Adsorption Ability and Physical–Hydraulic Properties of Torrefied Biomass: Initial Study," Energies, MDPI, vol. 16(4), pages 1-18, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1780-:d:1064669
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1780/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1780/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Arkadiusz Dyjakon & Tomasz Noszczyk, 2020. "Alternative Fuels from Forestry Biomass Residue: Torrefaction Process of Horse Chestnuts, Oak Acorns, and Spruce Cones," Energies, MDPI, vol. 13(10), pages 1-19, May.
    2. Grzegorz Zając & Joanna Szyszlak-Bargłowicz & Wojciech Gołębiowski & Małgorzata Szczepanik, 2018. "Chemical Characteristics of Biomass Ashes," Energies, MDPI, vol. 11(11), pages 1-15, October.
    3. Arkadiusz Dyjakon & Tomasz Noszczyk & Łukasz Sobol & Dominika Misiakiewicz, 2021. "Influence of Torrefaction Temperature and Climatic Chamber Operation Time on Hydrophobic Properties of Agri-Food Biomass Investigated Using the EMC Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    4. Piotr Piersa & Hilal Unyay & Szymon Szufa & Wiktoria Lewandowska & Remigiusz Modrzewski & Radosław Ślężak & Stanisław Ledakowicz, 2022. "An Extensive Review and Comparison of Modern Biomass Torrefaction Reactors vs. Biomass Pyrolysis—Part 1," Energies, MDPI, vol. 15(6), pages 1-34, March.
    5. Joseph I. Orisaleye & Simeon O. Jekayinfa & Ralf Pecenka & Adebayo A. Ogundare & Michael O. Akinseloyin & Opeyemi L. Fadipe, 2022. "Investigation of the Effects of Torrefaction Temperature and Residence Time on the Fuel Quality of Corncobs in a Fixed-Bed Reactor," Energies, MDPI, vol. 15(14), pages 1-16, July.
    6. Shi-Xiang Zhao & Na Ta & Xu-Dong Wang, 2017. "Effect of Temperature on the Structural and Physicochemical Properties of Biochar with Apple Tree Branches as Feedstock Material," Energies, MDPI, vol. 10(9), pages 1-15, August.
    7. Łukasz Sobol & Karol Wolski & Adam Radkowski & Elżbieta Piwowarczyk & Maciej Jurkowski & Henryk Bujak & Arkadiusz Dyjakon, 2022. "Determination of Energy Parameters and Their Variability between Varieties of Fodder and Turf Grasses," Sustainability, MDPI, vol. 14(18), pages 1-19, September.
    8. Arkadiusz Dyjakon & Łukasz Sobol & Tomasz Noszczyk & Jakub Mitręga, 2022. "The Impact of Torrefaction Temperature on the Physical-Chemical Properties of Residual Exotic Fruit (Avocado, Mango, Lychee) Seeds," Energies, MDPI, vol. 15(2), pages 1-16, January.
    9. Wang, Shurong & Dai, Gongxin & Ru, Bin & Zhao, Yuan & Wang, Xiaoliu & Xiao, Gang & Luo, Zhongyang, 2017. "Influence of torrefaction on the characteristics and pyrolysis behavior of cellulose," Energy, Elsevier, vol. 120(C), pages 864-871.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Łukasz Sobol & Dominika Sabat & Arkadiusz Dyjakon, 2023. "Assessment of Bark Properties from Various Tree Species in Terms of Its Hydrophobicity and Energy Suitability," Energies, MDPI, vol. 16(18), pages 1-21, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wojciech Rzeźnik & Ilona Rzeźnik & Paulina Mielcarek-Bocheńska & Mateusz Urbański, 2023. "Air Pollutants Emission during Co-Combustion of Animal Manure and Wood Pellets in 15 kW Boiler," Energies, MDPI, vol. 16(18), pages 1-17, September.
    2. Huang, Shengxiong & Lei, Can & Qin, Jie & Yi, Cheng & Chen, Tao & Yao, Lingling & Li, Bo & Wen, Yujiao & Zhou, Zhi & Xia, Mao, 2022. "Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration," Energy, Elsevier, vol. 251(C).
    3. Yajing He & Shihong Zhang & Dongjing Liu & Xing Xie & Bin Li, 2023. "Effect of Biomass Particle Size on the Torrefaction Characteristics in a Fixed-Bed Reactor," Energies, MDPI, vol. 16(3), pages 1-14, January.
    4. Munawar, Muhammad Assad & Khoja, Asif Hussain & Naqvi, Salman Raza & Mehran, Muhammad Taqi & Hassan, Muhammad & Liaquat, Rabia & Dawood, Usama Fida, 2021. "Challenges and opportunities in biomass ash management and its utilization in novel applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    5. Elżbieta Rolka & Andrzej Cezary Żołnowski & Mirosław Wyszkowski & Weronika Zych & Anna Skorwider-Namiotko, 2023. "Wood Biomass Ash (WBA) from the Heat Production Process as a Mineral Amendment for Improving Selected Soil Properties," Energies, MDPI, vol. 16(13), pages 1-17, July.
    6. Daniele Basso & Elsa Weiss-Hortala & Francesco Patuzzi & Marco Baratieri & Luca Fiori, 2018. "In Deep Analysis on the Behavior of Grape Marc Constituents during Hydrothermal Carbonization," Energies, MDPI, vol. 11(6), pages 1-19, May.
    7. Chen, Dengyu & Cen, Kehui & Cao, Xiaobing & Chen, Fan & Zhang, Jie & Zhou, Jianbin, 2021. "Insight into a new phenolic-leaching pretreatment on bamboo pyrolysis: Release characteristics of pyrolytic volatiles, upgradation of three phase products, migration of elements, and energy yield," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    8. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    9. Andrzej Greinert & Maria Mrówczyńska & Radosław Grech & Wojciech Szefner, 2020. "The Use of Plant Biomass Pellets for Energy Production by Combustion in Dedicated Furnaces," Energies, MDPI, vol. 13(2), pages 1-17, January.
    10. Elżbieta Jarosz-Krzemińska & Joanna Poluszyńska, 2020. "Repurposing Fly Ash Derived from Biomass Combustion in Fluidized Bed Boilers in Large Energy Power Plants as a Mineral Soil Amendment," Energies, MDPI, vol. 13(18), pages 1-21, September.
    11. Zhiqiang Gu & Qi Zhang & Guobi Sun & Jiaxin Lu & Yuxin Liu & Zhenxia Huang & Shuming Xu & Jianghua Xiong & Yuhuan Liu, 2023. "Pretreatment of Biogas Slurry by Modified Biochars to Promote High-Value Treatment of Wastewater by Microalgae," Sustainability, MDPI, vol. 15(4), pages 1-15, February.
    12. Saowanee Wijitkosum, 2023. "Repurposing Disposable Bamboo Chopsticks Waste as Biochar for Agronomical Application," Energies, MDPI, vol. 16(2), pages 1-16, January.
    13. Elena Butnaru & Mihai Brebu, 2022. "The Thermochemical Conversion of Forestry Residues from Silver Fir ( Abies alba Mill.) by Torrefaction and Pyrolysis," Energies, MDPI, vol. 15(10), pages 1-20, May.
    14. Chen, Dongyu & Gao, Dongxiao & Capareda, Sergio C. & E, Shuang & Jia, Fengrui & Wang, Ying, 2020. "Influences of hydrochloric acid washing on the thermal decomposition behavior and thermodynamic parameters of sweet sorghum stalk," Renewable Energy, Elsevier, vol. 148(C), pages 1244-1255.
    15. Mishra, Ranjeet Kumar & Mohanty, Kaustubha, 2019. "Pyrolysis of three waste biomass: Effect of biomass bed thickness and distance between successive beds on pyrolytic products yield and properties," Renewable Energy, Elsevier, vol. 141(C), pages 549-558.
    16. Magdalena Dołżyńska & Sławomir Obidziński & Jolanta Piekut & Güray Yildiz, 2020. "The Utilization of Plum Stones for Pellet Production and Investigation of Post-Combustion Flue Gas Emissions," Energies, MDPI, vol. 13(19), pages 1-19, October.
    17. Liza Nuriati Lim Kim Choo & Osumanu Haruna Ahmed & Nik Muhamad Nik Majid & Zakry Fitri Abd Aziz, 2021. "Pineapple Residue Ash Reduces Carbon Dioxide and Nitrous Oxide Emissions in Pineapple Cultivation on Tropical Peat Soils at Saratok, Malaysia," Sustainability, MDPI, vol. 13(3), pages 1-23, January.
    18. González Martínez, María & Dupont, Capucine & da Silva Perez, Denilson & Mortha, Gérard & Thiéry, Sébastien & Meyer, Xuân-mi & Gourdon, Christophe, 2020. "Understanding the torrefaction of woody and agricultural biomasses through their extracted macromolecular components. Part 1: Experimental thermogravimetric solid mass loss," Energy, Elsevier, vol. 205(C).
    19. Grzegorz Czerski, 2022. "Pyrolysis and Gasification of Biomass and Waste," Energies, MDPI, vol. 15(19), pages 1-5, October.
    20. Xin, Shanzhi & Huang, Fang & Qi, Wei & Mi, Tie, 2020. "Pyrolysis of torrefied herbal medicine wastes: Characterization of pyrolytic products," Energy, Elsevier, vol. 210(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1780-:d:1064669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.