IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1182-d1043150.html
   My bibliography  Save this article

Heuristic Retailer’s Day-Ahead Pricing Based on Online-Learning of Prosumer’s Optimal Energy Management Model

Author

Listed:
  • Mohammad Hossein Nejati Amiri

    (Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Mehdi Mehdinejad

    (Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

  • Amin Mohammadpour Shotorbani

    (School of Engineering, University of British Columbia—Okanagan Campus, Kelowna, BC V1V 1V7, Canada)

  • Heidarali Shayanfar

    (Center of Excellence for Power Systems Automation and Operation, School of Electrical Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran)

Abstract

Smart grids have introduced several key concepts, including demand response, prosumers—active consumers capable of producing, consuming, and storing both electrical and thermal energies—retail market, and local energy markets. Preserving data privacy in this emerging environment has raised concerns and challenges. The use of novel methods such as online learning is recommended to address these challenges through prediction of the behavior of market stakeholders. In particular, the challenge of predicting prosumers’ behavior in an interaction with retailers requires creating a dynamic environment for retailers to set their optimal pricing. An innovative model of retailer–prosumer interactions in a day-ahead market is presented in this paper. By forecasting the behavior of prosumers by using an online learning method, the retailer implements an optimal pricing scheme to maximize profits. Prosumers, however, seek to reduce energy costs to the greatest extent possible. It is possible for prosumers to participate in a price-based demand response program voluntarily and without the retailer’s interference, ensuring their privacy. A heuristic distributed approach is applied to solve the proposed problem in a fully distributed framework with minimum information exchange between retailers and prosumers. The case studies demonstrate that the proposed model effectively fulfills its objectives for both retailer and prosumer sides by adopting the distributed approach.

Suggested Citation

  • Mohammad Hossein Nejati Amiri & Mehdi Mehdinejad & Amin Mohammadpour Shotorbani & Heidarali Shayanfar, 2023. "Heuristic Retailer’s Day-Ahead Pricing Based on Online-Learning of Prosumer’s Optimal Energy Management Model," Energies, MDPI, vol. 16(3), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1182-:d:1043150
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1182/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1182/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Clastres, Cédric & Khalfallah, Haikel, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Energy Economics, Elsevier, vol. 98(C).
    2. Khorasany, Mohsen & Razzaghi, Reza & Shokri Gazafroudi, Amin, 2021. "Two-stage mechanism design for energy trading of strategic agents in energy communities," Applied Energy, Elsevier, vol. 295(C).
    3. Lu, Renzhi & Hong, Seung Ho & Zhang, Xiongfeng, 2018. "A Dynamic pricing demand response algorithm for smart grid: Reinforcement learning approach," Applied Energy, Elsevier, vol. 220(C), pages 220-230.
    4. Nojavan, Sayyad & Zare, Kazem & Mohammadi-Ivatloo, Behnam, 2017. "Optimal stochastic energy management of retailer based on selling price determination under smart grid environment in the presence of demand response program," Applied Energy, Elsevier, vol. 187(C), pages 449-464.
    5. Ju, Liwei & Wu, Jing & Lin, Hongyu & Tan, Qinliang & Li, Gen & Tan, Zhongfu & Li, Jiayu, 2020. "Robust purchase and sale transactions optimization strategy for electricity retailers with energy storage system considering two-stage demand response," Applied Energy, Elsevier, vol. 271(C).
    6. SoltaniNejad Farsangi, Alireza & Hadayeghparast, Shahrzad & Mehdinejad, Mehdi & Shayanfar, Heidarali, 2018. "A novel stochastic energy management of a microgrid with various types of distributed energy resources in presence of demand response programs," Energy, Elsevier, vol. 160(C), pages 257-274.
    7. Alipour, Manijeh & Zare, Kazem & Seyedi, Heresh & Jalali, Mehdi, 2019. "Real-time price-based demand response model for combined heat and power systems," Energy, Elsevier, vol. 168(C), pages 1119-1127.
    8. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Peer-to-peer decentralized energy trading framework for retailers and prosumers," Applied Energy, Elsevier, vol. 308(C).
    9. Zhou, Yuqi & Yu, Wenbin & Zhu, Shanying & Yang, Bo & He, Jianping, 2021. "Distributionally robust chance-constrained energy management of an integrated retailer in the multi-energy market," Applied Energy, Elsevier, vol. 286(C).
    10. Jin, Ming & Feng, Wei & Marnay, Chris & Spanos, Costas, 2018. "Microgrid to enable optimal distributed energy retail and end-user demand response," Applied Energy, Elsevier, vol. 210(C), pages 1321-1335.
    11. Aghamohammadloo, Hossein & Talaeizadeh, Valiollah & Shahanaghi, Kamran & Aghaei, Jamshid & Shayanfar, Heidarali & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Integrated Demand Response programs and energy hubs retail energy market modelling," Energy, Elsevier, vol. 234(C).
    12. Nikzad, Mehdi & Samimi, Abouzar, 2021. "Integration of designing price-based demand response models into a stochastic bi-level scheduling of multiple energy carrier microgrids considering energy storage systems," Applied Energy, Elsevier, vol. 282(PA).
    13. Dadashi, Mojtaba & Haghifam, Sara & Zare, Kazem & Haghifam, Mahmoud-Reza & Abapour, Mehdi, 2020. "Short-term scheduling of electricity retailers in the presence of Demand Response Aggregators: A two-stage stochastic Bi-Level programming approach," Energy, Elsevier, vol. 205(C).
    14. Cédric Clastres & Haikel Khalfallah, 2021. "Dynamic pricing efficiency with strategic retailers and consumers: An analytical analysis of short-term market interactions," Post-Print hal-03193212, HAL.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hassan Khazaei & Hossein Aghamohammadloo & Milad Habibi & Mehdi Mehdinejad & Amin Mohammadpour Shotorbani, 2023. "Novel Decentralized Peer-to-Peer Gas and Electricity Transaction Market between Prosumers and Retailers Considering Integrated Demand Response Programs," Sustainability, MDPI, vol. 15(7), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    2. Tian, Xiaoge & Chen, Weiming & Hu, Jinglu, 2023. "Game-theoretic modeling of power supply chain coordination under demand variation in China: A case study of Guangdong Province," Energy, Elsevier, vol. 262(PA).
    3. Hakimi, Seyed Mehdi & Hasankhani, Arezoo & Shafie-khah, Miadreza & Catalão, João P.S., 2021. "Stochastic planning of a multi-microgrid considering integration of renewable energy resources and real-time electricity market," Applied Energy, Elsevier, vol. 298(C).
    4. Lu, Renzhi & Hong, Seung Ho, 2019. "Incentive-based demand response for smart grid with reinforcement learning and deep neural network," Applied Energy, Elsevier, vol. 236(C), pages 937-949.
    5. Dong, Jun & Jiang, Yuzheng & Liu, Dongran & Dou, Xihao & Liu, Yao & Peng, Shicheng, 2022. "Promoting dynamic pricing implementation considering policy incentives and electricity retailers’ behaviors: An evolutionary game model based on prospect theory," Energy Policy, Elsevier, vol. 167(C).
    6. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    7. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    8. Lu, Renzhi & Bai, Ruichang & Ding, Yuemin & Wei, Min & Jiang, Junhui & Sun, Mingyang & Xiao, Feng & Zhang, Hai-Tao, 2021. "A hybrid deep learning-based online energy management scheme for industrial microgrid," Applied Energy, Elsevier, vol. 304(C).
    9. Nemanja Mišljenović & Matej Žnidarec & Goran Knežević & Damir Šljivac & Andreas Sumper, 2023. "A Review of Energy Management Systems and Organizational Structures of Prosumers," Energies, MDPI, vol. 16(7), pages 1-32, March.
    10. Haibing Wang & Chengmin Wang & Weiqing Sun & Muhammad Qasim Khan, 2022. "Energy Pricing and Management for the Integrated Energy Service Provider: A Stochastic Stackelberg Game Approach," Energies, MDPI, vol. 15(19), pages 1-15, October.
    11. Qiu, Dawei & Wang, Yi & Wang, Junkai & Jiang, Chuanwen & Strbac, Goran, 2023. "Personalized retail pricing design for smart metering consumers in electricity market," Applied Energy, Elsevier, vol. 348(C).
    12. Wang, Yudong & Hu, Junjie, 2023. "Two-stage energy management method of integrated energy system considering pre-transaction behavior of energy service provider and users," Energy, Elsevier, vol. 271(C).
    13. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    14. Shahryari, E. & Shayeghi, H. & Mohammadi-ivatloo, B. & Moradzadeh, M., 2019. "A copula-based method to consider uncertainties for multi-objective energy management of microgrid in presence of demand response," Energy, Elsevier, vol. 175(C), pages 879-890.
    15. Navid Rezaei & Abdollah Ahmadi & Mohammadhossein Deihimi, 2022. "A Comprehensive Review of Demand-Side Management Based on Analysis of Productivity: Techniques and Applications," Energies, MDPI, vol. 15(20), pages 1-28, October.
    16. Mehdinejad, Mehdi & Shayanfar, Heidarali & Mohammadi-Ivatloo, Behnam, 2022. "Peer-to-peer decentralized energy trading framework for retailers and prosumers," Applied Energy, Elsevier, vol. 308(C).
    17. Seyed Amin Sedgh & Hossein Aghamohammadloo & Hassan Khazaei & Mehdi Mehdinejad & Somayeh Asadi, 2023. "A New Design for the Peer-to-Peer Electricity and Gas Markets Based on Robust Probabilistic Programming," Energies, MDPI, vol. 16(8), pages 1-19, April.
    18. Haikel Khalfallah & Bibata Sagnon, 2023. "Coordination séquentielle des investissements dans la production d'électricité et dans le réseau électrique : le rôle des incitations renouvelables," Working Papers 2023-04, Grenoble Applied Economics Laboratory (GAEL).
    19. Hassan Khazaei & Hossein Aghamohammadloo & Milad Habibi & Mehdi Mehdinejad & Amin Mohammadpour Shotorbani, 2023. "Novel Decentralized Peer-to-Peer Gas and Electricity Transaction Market between Prosumers and Retailers Considering Integrated Demand Response Programs," Sustainability, MDPI, vol. 15(7), pages 1-18, April.
    20. Khalili, Reza & Khaledi, Arian & Marzband, Mousa & Nematollahi, Amin Foroughi & Vahidi, Behrooz & Siano, Pierluigi, 2023. "Robust multi-objective optimization for the Iranian electricity market considering green hydrogen and analyzing the performance of different demand response programs," Applied Energy, Elsevier, vol. 334(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1182-:d:1043150. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.