IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1101-d1040870.html
   My bibliography  Save this article

Analysis of the Suitability of the EOLO Wind-Predictor Model for the Spanish Electricity Markets

Author

Listed:
  • Saray Martínez-Lastras

    (Department of Cartographic and Land Engineering, EPS Ávila, University of Salamanca, 05003 Ávila, Spain)

  • Laura Frías-Paredes

    (Statistics, Computer Science and Mathematics, Public University of Navarra, 31006 Pamplona, Spain)

  • Diego Prieto-Herráez

    (Department of Cartographic and Land Engineering, EPS Ávila, University of Salamanca, 05003 Ávila, Spain
    Sciences and Arts Faculty, Catholic University of Ávila (UCAV), Calle Canteros s/n, 05005 Ávila, Spain)

  • Martín Gastón-Romeo

    (Statistics, Computer Science and Mathematics, Public University of Navarra, 31006 Pamplona, Spain)

  • Diego González-Aguilera

    (Department of Cartographic and Land Engineering, EPS Ávila, University of Salamanca, 05003 Ávila, Spain)

Abstract

Wind energy forecasting is a critical aspect for wind energy producers, given that the chaotic nature and the intermittence of meteorological wind cause difficulties for both the integration and the commercialization of wind-produced electricity. For most European producers, the quality of the forecast also affects their financial outcomes since it is necessary to include the impact of imbalance penalties due to the regularization in balancing markets. To help wind farm owners in the elaboration of offers for electricity markets, the EOLO predictor model can be used. This tool combines different sources of data, such as meteorological forecasts, electric market information, and historic production of the wind farm, to generate an estimation of the energy to be produced, which maximizes its financial performance by minimizing the imbalance penalties. This research study aimed to evaluate the performance of the EOLO predictor model when it is applied to the different Spanish electricity markets, focusing on the statistical analysis of its results. Results show how the wind energy forecast generated by EOLO anticipates real electricity generation with high accuracy and stability, providing a reduced forecast error when it is used to participate in successive sessions of the Spanish electricity market. The obtained error, in terms of RMAE, ranges from 8%, when it is applied to the Day-ahead market, to 6%, when it is applied to the last intraday market. In financial terms, the prediction achieves a financial performance near 99% once imbalance penalties have been discounted.

Suggested Citation

  • Saray Martínez-Lastras & Laura Frías-Paredes & Diego Prieto-Herráez & Martín Gastón-Romeo & Diego González-Aguilera, 2023. "Analysis of the Suitability of the EOLO Wind-Predictor Model for the Spanish Electricity Markets," Energies, MDPI, vol. 16(3), pages 1-16, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1101-:d:1040870
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1101/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1101/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rubin, Ofir D. & Babcock, Bruce A., 2013. "The impact of expansion of wind power capacity and pricing methods on the efficiency of deregulated electricity markets," Energy, Elsevier, vol. 59(C), pages 676-688.
    2. Michael G. Pollitt, 2019. "The European Single Market in Electricity: An Economic Assessment," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 55(1), pages 63-87, August.
    3. Jon Martinez-Rico & Ekaitz Zulueta & Unai Fernandez-Gamiz & Ismael Ruiz de Argandoña & Mikel Armendia, 2020. "Forecast Error Sensitivity Analysis for Bidding in Electricity Markets with a Hybrid Renewable Plant Using a Battery Energy Storage System," Sustainability, MDPI, vol. 12(9), pages 1-18, April.
    4. Tim Schittekatte & Valerie Reif & Leonardo Meeus, 2021. "Welcoming New Entrants into European Electricity Markets," Energies, MDPI, vol. 14(13), pages 1-20, July.
    5. Rivier Abbad, Juan, 2010. "Electricity market participation of wind farms: the success story of the Spanish pragmatism," Energy Policy, Elsevier, vol. 38(7), pages 3174-3179, July.
    6. Julián Chaparro-Peláez & Emiliano Acquila-Natale & Ángel Hernández-García & Santiago Iglesias-Pradas, 2020. "The Digital Transformation of the Retail Electricity Market in Spain," Energies, MDPI, vol. 13(8), pages 1-18, April.
    7. Corina Pelau & Carmen Acatrinei, 2019. "The Paradox of Energy Consumption Decrease in the Transition Period towards a Digital Society," Energies, MDPI, vol. 12(8), pages 1-16, April.
    8. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2017. "Real time procurement of energy and operating reserve from Renewable Energy Sources in deregulated environment considering imbalance penalties," Renewable Energy, Elsevier, vol. 113(C), pages 855-866.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julián Chaparro-Peláez & Emiliano Acquila-Natale & Ángel Hernández-García & Santiago Iglesias-Pradas, 2020. "The Digital Transformation of the Retail Electricity Market in Spain," Energies, MDPI, vol. 13(8), pages 1-18, April.
    2. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    3. Chen, Hao & Cui, Jian & Song, Feng & Jiang, Zhigao, 2022. "Evaluating the impacts of reforming and integrating China's electricity sector," Energy Economics, Elsevier, vol. 108(C).
    4. Pelau Corina & Barbul Maria, 2021. "Consumers’ perception on the use of cognitive computing," Proceedings of the International Conference on Business Excellence, Sciendo, vol. 15(1), pages 639-649, December.
    5. Woo, C.K. & Zarnikau, J. & Moore, J. & Horowitz, I., 2011. "Wind generation and zonal-market price divergence: Evidence from Texas," Energy Policy, Elsevier, vol. 39(7), pages 3928-3938, July.
    6. Luis R. Boscán, 2020. "European Union retail electricity markets in the Green Transition: The quest for adequate design," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(1), January.
    7. Andrés Ruiz & Florin Onea & Eugen Rusu, 2020. "Study Concerning the Expected Dynamics of the Wind Energy Resources in the Iberian Nearshore," Energies, MDPI, vol. 13(18), pages 1-25, September.
    8. Steven M. Smith, 2019. "The Relative Economic Merits of Alternative Water Rights," Working Papers 2019-08, Colorado School of Mines, Division of Economics and Business.
    9. Alessandro Sciullo & Gregory Winston Gilcrease & Mario Perugini & Dario Padovan & Barbara Curli & Jay Sterling Gregg & Osman Arrobbio & Erika Meynaerts & Sarah Delvaux & Lucia Polo-Alvarez & Chiara Ca, 2022. "Exploring Institutional and Socio-Economic Settings for the Development of Energy Communities in Europe," Energies, MDPI, vol. 15(4), pages 1-22, February.
    10. Yu-Chung Tsao & Thuy-Linh Vu, 2023. "Electricity pricing, capacity, and predictive maintenance considering reliability," Annals of Operations Research, Springer, vol. 322(2), pages 991-1011, March.
    11. Bert Willems & Juulia Zhou, 2020. "The Clean Energy Package and Demand Response: Setting Correct Incentives," Energies, MDPI, vol. 13(21), pages 1-19, October.
    12. Willems, Bert & Pollitt, Michael & von der Fehr, Nils-Henrik & Banet, Catherine, 2022. "The European Wholesale Electricty Market: From Crisis to Net Zero," Other publications TiSEM 2f225964-853e-4d30-a46d-0, Tilburg University, School of Economics and Management.
    13. Bekhzod Djalilov & Islomjon Kobiljonov & Raufhon Salahodjaev, 2023. "Can Digital Human Capital Mitigate CO2 Emissions? Empirical Test for Post-Communist Countries," International Journal of Energy Economics and Policy, Econjournals, vol. 13(4), pages 383-388, July.
    14. Dranka, Géremi Gilson & Ferreira, Paula & Vaz, A. Ismael F., 2021. "A review of co-optimization approaches for operational and planning problems in the energy sector," Applied Energy, Elsevier, vol. 304(C).
    15. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    16. Peng, Feixiang & Hu, Shubo & Fan, Xuanxuan & Sun, Hui & Zhou, Wei & Guo, Furan & Song, Wenzhuo, 2021. "Sequential coalition formation for wind-thermal combined bidding," Energy, Elsevier, vol. 236(C).
    17. Do, Hung Xuan & Nepal, Rabindra & Jamasb, Tooraj, 2020. "Electricity market integration, decarbonisation and security of supply: Dynamic volatility connectedness in the Irish and Great Britain markets," Energy Economics, Elsevier, vol. 92(C).
    18. Rodríguez-Sarasty, Jesús A. & Debia, Sébastien & Pineau, Pierre-Olivier, 2021. "Deep decarbonization in Northeastern North America: The value of electricity market integration and hydropower," Energy Policy, Elsevier, vol. 152(C).
    19. Radulescu, Doina & Sulger, Philippe, 2022. "Interdependencies between countries in the provision of energy," Energy Economics, Elsevier, vol. 107(C).
    20. Osińska, Magdalena & Kyzym, Mykola & Khaustova, Victoriia & Ilyash, Olha & Salashenko, Tetiana, 2022. "Does the Ukrainian electricity market correspond to the european model?," Utilities Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1101-:d:1040870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.