IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i23p7886-d1293023.html
   My bibliography  Save this article

Effect of the Ground Albedo on the Estimation of Solar Radiation on Tilted Flat-Plate Surfaces: The Case of Saudi Arabia

Author

Listed:
  • Ashraf Farahat

    (Department of Physics, College of General Studies, King Fahd University of Petroleum and Minerals, Dhahran SA-31261, Saudi Arabia
    Centre of Research Excellence in Renewable Energy, King Fahd University of Petroleum and Minerals, Dhahran SA-31261, Saudi Arabia)

  • Harry D. Kambezidis

    (Atmospheric Research Team, Institute of Environmental Research and Sustainable Development, National Observatory of Athens, GR-11810 Athens, Greece
    Laboratory of Soft Energies and Environmental Protection, Department of Mechanical Engineering, University of West Attica, GR-12241 Athens, Greece)

  • Styliani I. Kampezidou

    (Aerospace Systems Design Laboratory, Georgia Institute of Technology, 275 Ferst Dr NW, Atlanta, GA 30313, USA)

Abstract

This work investigates the influence of ground albedo on the solar radiation obtained by surfaces mounted on fixed-tilt-to-south, one-axis, and two-axis systems. To do this, estimation of the solar radiation difference is performed by applying real albedo and zero albedo. This is achieved within Saudi Arabia at 82 selected sites. Annual, seasonal, and monthly mean solar energy differences are computed as a function of the site’s number, latitude, and local near-real ground albedo. The great variation in the ground-albedo values at the 82 sites (0.1–0.46) could be thought of as having a significant effect on the solar radiation levels received on the three tracking modes. This analysis shows quite the opposite; zero-albedo ground diminishes solar radiation levels by 1.43%, 3.50%, and 3.20%, respectively, for the three modes. Therefore, in most solar engineering applications, a ground albedo of 0.2 (considered a reference) can be used without losing accuracy. This is the main conclusion of the study, which must, however, be applied with caution in areas with snow cover, especially for mode-III tracking systems. In such situations, the increase in solar radiation levels may be up to 15% (but ≈3.5% for mode-I and -II systems instead).

Suggested Citation

  • Ashraf Farahat & Harry D. Kambezidis & Styliani I. Kampezidou, 2023. "Effect of the Ground Albedo on the Estimation of Solar Radiation on Tilted Flat-Plate Surfaces: The Case of Saudi Arabia," Energies, MDPI, vol. 16(23), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7886-:d:1293023
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/23/7886/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/23/7886/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    2. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    3. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    4. S. Köhler & M. Betz & E. Duminil & U. Eicker & B. Schröter, 2021. "A holistic approach to model electricity loads in cities [Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 143-152, June.
    5. Mattia Manni & Alessandro Nocente & Martin Bellmann & Gabriele Lobaccaro, 2023. "Multi-Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
    6. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    7. Chinchilla, Monica & Santos-Martín, David & Carpintero-Rentería, Miguel & Lemon, Scott, 2021. "Worldwide annual optimum tilt angle model for solar collectors and photovoltaic systems in the absence of site meteorological data," Applied Energy, Elsevier, vol. 281(C).
    8. Kafka, Jennifer & Miller, Mark A., 2020. "The dual angle solar harvest (DASH) method: An alternative method for organizing large solar panel arrays that optimizes incident solar energy in conjunction with land use," Renewable Energy, Elsevier, vol. 155(C), pages 531-546.
    9. Wiktor Olchowik & Jędrzej Gajek & Andrzej Michalski, 2023. "The Use of Evolutionary Algorithms in the Modelling of Diffuse Radiation in Terms of Simulating the Energy Efficiency of Photovoltaic Systems," Energies, MDPI, vol. 16(6), pages 1-32, March.
    10. Harry D. Kambezidis & Konstantinos Mimidis & Kosmas A. Kavadias, 2023. "The Solar Energy Potential of Greece for Flat-Plate Solar Panels Mounted on Double-Axis Systems," Energies, MDPI, vol. 16(13), pages 1-28, June.
    11. Mayer, Martin János & Szilágyi, Artúr & Gróf, Gyula, 2020. "Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm," Applied Energy, Elsevier, vol. 269(C).
    12. Girard, A. & Gago, E.J. & Ordoñez, J. & Muneer, T., 2016. "Spain's energy outlook: A review of PV potential and energy export," Renewable Energy, Elsevier, vol. 86(C), pages 703-715.
    13. Quan, Hao & Yang, Dazhi, 2020. "Probabilistic solar irradiance transposition models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    14. Hay, John E., 1993. "Solar radiation data: Validation and quality control," Renewable Energy, Elsevier, vol. 3(4), pages 349-355.
    15. Wiktor Olchowik & Marcin Bednarek & Tadeusz Dąbrowski & Adam Rosiński, 2023. "Application of the Energy Efficiency Mathematical Model to Diagnose Photovoltaic Micro-Systems," Energies, MDPI, vol. 16(18), pages 1-24, September.
    16. Karen Barbosa de Melo & Hugo Soeiro Moreira & Marcelo Gradella Villalva, 2020. "Influence of Solar Position Calculation Methods Applied to Horizontal Single-Axis Solar Trackers on Energy Generation," Energies, MDPI, vol. 13(15), pages 1-15, July.
    17. Carlos Toledo & Ana Maria Gracia Amillo & Giorgio Bardizza & Jose Abad & Antonio Urbina, 2020. "Evaluation of Solar Radiation Transposition Models for Passive Energy Management and Building Integrated Photovoltaics," Energies, MDPI, vol. 13(3), pages 1-24, February.
    18. Youcef Ettoumi, F. & Mefti, A. & Adane, A. & Bouroubi, M.Y., 2002. "Statistical analysis of solar measurements in Algeria using beta distributions," Renewable Energy, Elsevier, vol. 26(1), pages 47-67.
    19. Leloux, Jonathan & Lorenzo, Eduardo & García-Domingo, Beatriz & Aguilera, Jorge & Gueymard, Christian A., 2014. "A bankable method of assessing the performance of a CPV plant," Applied Energy, Elsevier, vol. 118(C), pages 1-11.
    20. Barbón, A. & Carreira-Fontao, V. & Bayón, L. & Silva, C.A., 2023. "Optimal design and cost analysis of single-axis tracking photovoltaic power plants," Renewable Energy, Elsevier, vol. 211(C), pages 626-646.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:23:p:7886-:d:1293023. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.