IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i4p2938-d1059502.html
   My bibliography  Save this article

Multi-Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudes

Author

Listed:
  • Mattia Manni

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

  • Alessandro Nocente

    (SINTEF AS, 7034 Trondheim, Norway)

  • Martin Bellmann

    (SINTEF AS, 7034 Trondheim, Norway)

  • Gabriele Lobaccaro

    (Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway)

Abstract

Evaluating how the sources of uncertainty in solar modelling (e.g., input parameters, developed model chain) can influence the results’ accuracy is one of the main challenges when applied at high latitudes. In this study, a multi-stage validation workflow is implemented around five main stages: data acquisition, data quality check, solar radiation modelling, photovoltaic energy modelling, and experimental validation. Different data sources such as satellite observations, numerical reanalysis, and on-site ground measurements are considered as inputs, while the outcomes from each step of the model chain (e.g., decomposition modelling, transposition modelling, photovoltaic energy modelling) are compared against observations recorded from the solar radiation network at the Norwegian University of Science and Technology (NTNU-Solarnet) in Trondheim (Norway). In the first and second validation stages, the decomposition and transposition models with measured input parameters show the best accuracy indicators, but they do not fulfill the validation criteria. Conversely, in the third validation stage, the photovoltaic energy models with on-site ground measurements as inputs are experimentally validated. In conclusion, at high latitudes, the most accurate results are obtained when monitored solar irradiation data are used instead of satellite observations and numerical reanalysis. Furthermore, the shortest model chain is preferred, with equal data sources.

Suggested Citation

  • Mattia Manni & Alessandro Nocente & Martin Bellmann & Gabriele Lobaccaro, 2023. "Multi-Stage Validation of a Solar Irradiance Model Chain: An Application at High Latitudes," Sustainability, MDPI, vol. 15(4), pages 1-18, February.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2938-:d:1059502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/4/2938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/4/2938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hay, John E., 1993. "Calculating solar radiation for inclined surfaces: Practical approaches," Renewable Energy, Elsevier, vol. 3(4), pages 373-380.
    2. Naji, Sareh & Aye, Lu & Noguchi, Masa, 2021. "Multi-objective optimisations of envelope components for a prefabricated house in six climate zones," Applied Energy, Elsevier, vol. 282(PA).
    3. Matteo Formolli & Gabriele Lobaccaro & Jouri Kanters, 2021. "Solar Energy in the Nordic Built Environment: Challenges, Opportunities and Barriers," Energies, MDPI, vol. 14(24), pages 1-18, December.
    4. Gueymard, Christian A., 2014. "A review of validation methodologies and statistical performance indicators for modeled solar radiation data: Towards a better bankability of solar projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1024-1034.
    5. Miguel Centeno Brito, 2020. "Assessing the Impact of Photovoltaics on Rooftops and Facades in the Urban Micro-Climate," Energies, MDPI, vol. 13(11), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Starke, Allan R. & Lemos, Leonardo F.L. & Boland, John & Cardemil, José M. & Colle, Sergio, 2018. "Resolution of the cloud enhancement problem for one-minute diffuse radiation prediction," Renewable Energy, Elsevier, vol. 125(C), pages 472-484.
    2. Piotr Michalak, 2021. "Modelling of Solar Irradiance Incident on Building Envelopes in Polish Climatic Conditions: The Impact on Energy Performance Indicators of Residential Buildings," Energies, MDPI, vol. 14(14), pages 1-27, July.
    3. Formolli, M. & Kleiven, T. & Lobaccaro, G., 2023. "Assessing solar energy accessibility at high latitudes: A systematic review of urban spatial domains, metrics, and parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 177(C).
    4. Purohit, Ishan & Purohit, Pallav, 2018. "Performance assessment of grid-interactive solar photovoltaic projects under India’s national solar mission," Applied Energy, Elsevier, vol. 222(C), pages 25-41.
    5. Hussain, C.M. Iftekhar & Norton, Brian & Duffy, Aidan, 2017. "Technological assessment of different solar-biomass systems for hybrid power generation in Europe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 1115-1129.
    6. Nonnenmacher, Lukas & Kaur, Amanpreet & Coimbra, Carlos F.M., 2016. "Day-ahead resource forecasting for concentrated solar power integration," Renewable Energy, Elsevier, vol. 86(C), pages 866-876.
    7. Benkaciali, Saïd & Haddadi, Mourad & Khellaf, Abdellah, 2018. "Evaluation of direct solar irradiance from 18 broadband parametric models: Case of Algeria," Renewable Energy, Elsevier, vol. 125(C), pages 694-711.
    8. Jasiewicz Jarosław & Cierniewski Jerzy, 2021. "SALBEC – A Python Library and GUI Application to Calculate the Diurnal Variation of the Soil Albedo," Quaestiones Geographicae, Sciendo, vol. 40(3), pages 95-107, September.
    9. Amani, Madjid & Ghenaiet, Adel, 2020. "Novel hybridization of solar central receiver system with combined cycle power plant," Energy, Elsevier, vol. 201(C).
    10. Sun, Xixi & Bright, Jamie M. & Gueymard, Christian A. & Bai, Xinyu & Acord, Brendan & Wang, Peng, 2021. "Worldwide performance assessment of 95 direct and diffuse clear-sky irradiance models using principal component analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    11. Voyant, Cyril & Soubdhan, Ted & Lauret, Philippe & David, Mathieu & Muselli, Marc, 2015. "Statistical parameters as a means to a priori assess the accuracy of solar forecasting models," Energy, Elsevier, vol. 90(P1), pages 671-679.
    12. Casares de la Torre, F.J. & Varo, Marta & López-Luque, R. & Ramírez-Faz, J. & Fernández-Ahumada, L.M., 2022. "Design and analysis of a tracking / backtracking strategy for PV plants with horizontal trackers after their conversion to agrivoltaic plants," Renewable Energy, Elsevier, vol. 187(C), pages 537-550.
    13. Elaouzy, Youssef & El Fadar, Abdellah, 2023. "Sustainability of building-integrated bioclimatic design strategies depending on energy affordability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    14. Marzo, A. & Trigo-Gonzalez, M. & Alonso-Montesinos, J. & Martínez-Durbán, M. & López, G. & Ferrada, P. & Fuentealba, E. & Cortés, M. & Batlles, F.J., 2017. "Daily global solar radiation estimation in desert areas using daily extreme temperatures and extraterrestrial radiation," Renewable Energy, Elsevier, vol. 113(C), pages 303-311.
    15. S. Köhler & M. Betz & E. Duminil & U. Eicker & B. Schröter, 2021. "A holistic approach to model electricity loads in cities [Ein ganzheitlicher Ansatz zur Modellierung des Stromverbrauchs in Städten]," NachhaltigkeitsManagementForum | Sustainability Management Forum, Springer, vol. 29(2), pages 143-152, June.
    16. Behar, O. & Sbarbaro, D. & Marzo, A. & Gonzalez, M. Trigo & Vidal, E. Fuentealba & Moran, L., 2020. "Critical analysis and performance comparison of thirty-eight (38) clear-sky direct irradiance models under the climate of Chilean Atacama Desert," Renewable Energy, Elsevier, vol. 153(C), pages 49-60.
    17. Victor Hugo Wentz & Joylan Nunes Maciel & Jorge Javier Gimenez Ledesma & Oswaldo Hideo Ando Junior, 2022. "Solar Irradiance Forecasting to Short-Term PV Power: Accuracy Comparison of ANN and LSTM Models," Energies, MDPI, vol. 15(7), pages 1-23, March.
    18. Polo, Jesús & Alonso-Abella, Miguel & Martín-Chivelet, Nuria & Alonso-Montesinos, Joaquín & López, Gabriel & Marzo, Aitor & Nofuentes, Gustavo & Vela-Barrionuevo, Nieves, 2020. "Typical Meteorological Year methodologies applied to solar spectral irradiance for PV applications," Energy, Elsevier, vol. 190(C).
    19. Panagiotis Moraitis & Bala Bhavya Kausika & Nick Nortier & Wilfried Van Sark, 2018. "Urban Environment and Solar PV Performance: The Case of the Netherlands," Energies, MDPI, vol. 11(6), pages 1-14, May.
    20. Elzbieta Rynska, 2022. "Review of PV Solar Energy Development 2011–2021 in Central European Countries," Energies, MDPI, vol. 15(21), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:4:p:2938-:d:1059502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.