IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i22p7652-d1282930.html
   My bibliography  Save this article

Technical Impacts of Virtual Clean Hydrogen Plants: Promoting Energy Balance and Resolving Transmission Congestion Challenges

Author

Listed:
  • Gyeong-Taek Do

    (Department of Electronic and Electrical Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

  • Eun-Tae Son

    (Department of Electronic and Electrical Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

  • Byeong-Chan Oh

    (Department of Electronic and Electrical Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

  • Hong-Joo Kim

    (KEPCO Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea)

  • Ho-Sung Ryu

    (KEPCO Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea)

  • Jin-Tae Cho

    (KEPCO Research Institute (KEPRI), 105 Munji-ro, Yuseong-gu, Daejeon 34056, Republic of Korea)

  • Sung-Yul Kim

    (Department of Electrical Energy Engineering, Keimyung University, 1095 Dalgubeol-daero, Daegu 42601, Republic of Korea)

Abstract

This paper presents the VCHP platform as a solution to address PV curtailment and line congestion in scenarios of increasing renewable energy penetration. Solar PV generation profiles and load profiles were generated for three scenarios (2025, 2030, and 2035) using data provided by KPX. Modifications were made to the IEEE 30 Bus model to accurately reflect the Korean power system, including the introduction of PCA and LCA at relevant buses. Line congestion was evaluated using metrics such as TUR, STUR, and TLR. The research findings indicate that integrating the VCHP platform in all scenarios effectively alleviates line congestion, as shown by the TUR remaining below 1. Importantly, the reduction in line losses exceeds the decrease in power flow, demonstrating the effectiveness of VCHP in reducing power losses. The results suggest that as renewable energy sources increase, line congestion issues may arise in the existing power system. However, integrating the proposed VCHP platform is a valuable solution for effectively utilizing surplus PV energy and improving the stability of the power grid. The adoption of such a platform can significantly enhance the operation and management of the power system.

Suggested Citation

  • Gyeong-Taek Do & Eun-Tae Son & Byeong-Chan Oh & Hong-Joo Kim & Ho-Sung Ryu & Jin-Tae Cho & Sung-Yul Kim, 2023. "Technical Impacts of Virtual Clean Hydrogen Plants: Promoting Energy Balance and Resolving Transmission Congestion Challenges," Energies, MDPI, vol. 16(22), pages 1-13, November.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7652-:d:1282930
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/22/7652/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/22/7652/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    2. Ju, Liwei & Zhao, Rui & Tan, Qinliang & Lu, Yan & Tan, Qingkun & Wang, Wei, 2019. "A multi-objective robust scheduling model and solution algorithm for a novel virtual power plant connected with power-to-gas and gas storage tank considering uncertainty and demand response," Applied Energy, Elsevier, vol. 250(C), pages 1336-1355.
    3. Zhou, Suyang & Sun, Kaiyu & Wu, Zhi & Gu, Wei & Wu, Gaoxiang & Li, Zhe & Li, Junjie, 2020. "Optimized operation method of small and medium-sized integrated energy system for P2G equipment under strong uncertainty," Energy, Elsevier, vol. 199(C).
    4. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xu, Jiazhu & Yi, Yuqin, 2023. "Multi-microgrid low-carbon economy operation strategy considering both source and load uncertainty: A Nash bargaining approach," Energy, Elsevier, vol. 263(PB).
    2. Son, Yeong Geon & Choi, Sungyun & Aquah, Moses Amoasi & Kim, Sung Yul, 2023. "Systematic planning of power-to-gas for improving photovoltaic acceptance rate: Application of the potential RES penetration index," Applied Energy, Elsevier, vol. 349(C).
    3. Khashayar Hamedi & Shahrbanoo Sadeghi & Saeed Esfandi & Mahdi Azimian & Hessam Golmohamadi, 2021. "Eco-Emission Analysis of Multi-Carrier Microgrid Integrated with Compressed Air and Power-to-Gas Energy Storage Technologies," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
    4. Zhihan Shi & Weisong Han & Guangming Zhang & Zhiqing Bai & Mingxiang Zhu & Xiaodong Lv, 2022. "Research on Low-Carbon Energy Sharing through the Alliance of Integrated Energy Systems with Multiple Uncertainties," Energies, MDPI, vol. 15(24), pages 1-20, December.
    5. Han, Fengwu & Zeng, Jianfeng & Lin, Junjie & Zhao, Yunlong & Gao, Chong, 2023. "A stochastic hierarchical optimization and revenue allocation approach for multi-regional integrated energy systems based on cooperative games," Applied Energy, Elsevier, vol. 350(C).
    6. Li, Bo & Li, Xu & Su, Qingyu, 2022. "A system and game strategy for the isolated island electric-gas deeply coupled energy network," Applied Energy, Elsevier, vol. 306(PA).
    7. Zhao, Naixin & Gu, Wenbo & Zheng, Zipeng & Ma, Tao, 2023. "Multi-objective bi-level planning of the integrated energy system considering uncertain user loads and carbon emission during the equipment manufacturing process," Renewable Energy, Elsevier, vol. 216(C).
    8. Yang, Shenbo & Tan, Zhongfu & Lin, Hongyu & Li, Peng & De, Gejirifu & Zhou, Feng’ao & Ju, Liwei, 2020. "A two-stage optimization model for Park Integrated Energy System operation and benefit allocation considering the effect of Time-Of-Use energy price," Energy, Elsevier, vol. 195(C).
    9. Yang, Xiaohui & Zhang, Zhonglian & Mei, Linghao & Wang, Xiaopeng & Deng, Yeheng & Wei, Shi & Liu, Xiaoping, 2023. "Optimal configuration of improved integrated energy system based on stepped carbon penalty response and improved power to gas," Energy, Elsevier, vol. 263(PD).
    10. Son, Yeong Geon & Oh, Byeong Chan & Acquah, Moses Amoasi & Kim, Sung Yul, 2023. "Optimal facility combination set of integrated energy system based on consensus point between independent system operator and independent power producer," Energy, Elsevier, vol. 266(C).
    11. Wagner, Lukas Peter & Reinpold, Lasse Matthias & Kilthau, Maximilian & Fay, Alexander, 2023. "A systematic review of modeling approaches for flexible energy resources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    12. Tong Xing & Hongyu Lin & Zhongfu Tan & Liwei Ju, 2019. "Coordinated Energy Management for Micro Energy Systems Considering Carbon Emissions Using Multi-Objective Optimization," Energies, MDPI, vol. 12(23), pages 1-27, November.
    13. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Tan, Caixia & Wang, Jing & Geng, Shiping & Pu, Lei & Tan, Zhongfu, 2021. "Three-level market optimization model of virtual power plant with carbon capture equipment considering copula–CVaR theory," Energy, Elsevier, vol. 237(C).
    15. Masoud Agabalaye-Rahvar & Amin Mansour-Saatloo & Mohammad Amin Mirzaei & Behnam Mohammadi-Ivatloo & Kazem Zare & Amjad Anvari-Moghaddam, 2020. "Robust Optimal Operation Strategy for a Hybrid Energy System Based on Gas-Fired Unit, Power-to-Gas Facility and Wind Power in Energy Markets," Energies, MDPI, vol. 13(22), pages 1-21, November.
    16. Wang, Yuwei & Yang, Yuanjuan & Fei, Haoran & Song, Minghao & Jia, Mengyao, 2022. "Wasserstein and multivariate linear affine based distributionally robust optimization for CCHP-P2G scheduling considering multiple uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    17. Alabi, Tobi Michael & Lu, Lin & Yang, Zaiyue, 2021. "Stochastic optimal planning scheme of a zero-carbon multi-energy system (ZC-MES) considering the uncertainties of individual energy demand and renewable resources: An integrated chance-constrained and," Energy, Elsevier, vol. 232(C).
    18. Gan, Wei & Yan, Mingyu & Yao, Wei & Wen, Jinyu, 2021. "Peer to peer transactive energy for multiple energy hub with the penetration of high-level renewable energy," Applied Energy, Elsevier, vol. 295(C).
    19. Chengkang Guo & Xiwang Abuduwayiti & Yiming Shang & Leiyu Huang & Chuanshi Cui, 2024. "Optimized Scheduling of Integrated Energy Systems Accounting for Hydrogen Energy Multi-Utilization Models," Sustainability, MDPI, vol. 16(3), pages 1-21, January.
    20. Ju, Liwei & Yin, Zhe & Zhou, Qingqing & Li, Qiaochu & Wang, Peng & Tian, Wenxu & Li, Peng & Tan, Zhongfu, 2022. "Nearly-zero carbon optimal operation model and benefit allocation strategy for a novel virtual power plant using carbon capture, power-to-gas, and waste incineration power in rural areas," Applied Energy, Elsevier, vol. 310(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:22:p:7652-:d:1282930. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.