IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i21p7225-d1266076.html
   My bibliography  Save this article

Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material

Author

Listed:
  • Geraint Sullivan

    (SPECIFIC, College of Engineering, Swansea University, Swansea SA2 8PP, UK)

  • Chris Griffiths

    (SPECIFIC, College of Engineering, Swansea University, Swansea SA2 8PP, UK)

  • Eifion Jewell

    (SPECIFIC, College of Engineering, Swansea University, Swansea SA2 8PP, UK)

  • Justin Searle

    (SPECIFIC, College of Engineering, Swansea University, Swansea SA2 8PP, UK)

  • Jonathon Elvins

    (SPECIFIC, College of Engineering, Swansea University, Swansea SA2 8PP, UK)

Abstract

Recent research into thermochemical storage (TCS) materials has highlighted their promising potential for seasonal building heating, through energy capture and release during dehydration and hydration cycling. A common TCS material used throughout this investigation was calcium chloride (CaCl 2 )-impregnated vermiculite-based salt in matrix (SIM). This material was assessed for its robustness during charging and discharging cycles to assess its behavior and in terms of energy stability and chemical stability; the results of which showed consistent volumetric energy density and maximum temperature changes over seven cycles. The calcium SIM did, however, show a decline in leachable Ca content, which was presumed to be a result of stabilization within the vermiculite, and chloride concentration showed little change over the course of the study. Real-time visualization using a high-resolution microscope of calcium SIM particles showed a salt phase change and migration of liquid salt into the valleys of the lamella. A novel cobalt chloride (CoCl 2 ) SIM was used to visualize the hydration path across the particle, through distinct color changes depending on hydration state. The results indicated that the topography of the vermiculite played a significant role in the passive hydration modeling.

Suggested Citation

  • Geraint Sullivan & Chris Griffiths & Eifion Jewell & Justin Searle & Jonathon Elvins, 2023. "Cycling Stability of Calcium-Impregnated Vermiculite in Open Reactor Used as a Thermochemical Storage Material," Energies, MDPI, vol. 16(21), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7225-:d:1266076
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/21/7225/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/21/7225/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Donkers, P.A.J. & Sögütoglu, L.C. & Huinink, H.P. & Fischer, H.R. & Adan, O.C.G., 2017. "A review of salt hydrates for seasonal heat storage in domestic applications," Applied Energy, Elsevier, vol. 199(C), pages 45-68.
    2. K. Huang & P. Rowe & C. Chi & V. Sreepal & T. Bohn & K.-G. Zhou & Y. Su & E. Prestat & P. Balakrishna Pillai & C. T. Cherian & A. Michaelides & R. R. Nair, 2020. "Cation-controlled wetting properties of vermiculite membranes and its promise for fouling resistant oil–water separation," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    3. Aarts, Joey & van Ravensteijn, Bas & Fischer, Hartmut & Adan, Olaf & Huinink, Henk, 2023. "Polymeric stabilization of salt hydrates for thermochemical energy storage," Applied Energy, Elsevier, vol. 341(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shkatulov, A.I. & Houben, J. & Fischer, H. & Huinink, H.P., 2020. "Stabilization of K2CO3 in vermiculite for thermochemical energy storage," Renewable Energy, Elsevier, vol. 150(C), pages 990-1000.
    2. Li, Wei & Klemeš, Jiří Jaromír & Wang, Qiuwang & Zeng, Min, 2020. "Development and characteristics analysis of salt-hydrate based composite sorbent for low-grade thermochemical energy storage," Renewable Energy, Elsevier, vol. 157(C), pages 920-940.
    3. Hu, Yige & Wang, Hang & Chen, Hu & Ding, Yang & Liu, Changtian & Jiang, Feng & Ling, Xiang, 2023. "A novel hydrated salt-based phase change material for medium- and low-thermal energy storage," Energy, Elsevier, vol. 274(C).
    4. Gao, J.T. & Xu, Z.Y. & Wang, R.Z., 2020. "Experimental study on a double-stage absorption solar thermal storage system with enhanced energy storage density," Applied Energy, Elsevier, vol. 262(C).
    5. Jin Wang & Zheng Cui & Shangzhen Li & Zeyuan Song & Miaolu He & Danxi Huang & Yuan Feng & YanZheng Liu & Ke Zhou & Xudong Wang & Lei Wang, 2024. "Unlocking osmotic energy harvesting potential in challenging real-world hypersaline environments through vermiculite-based hetero-nanochannels," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    6. Isye Hayatina & Amar Auckaili & Mohammed Farid, 2023. "Review on Salt Hydrate Thermochemical Heat Transformer," Energies, MDPI, vol. 16(12), pages 1-23, June.
    7. Chate, Akshay & Sharma, Rakesh & S, Srinivasa Murthy & Dutta, Pradip, 2022. "Studies on a potassium carbonate salt hydrate based thermochemical energy storage system," Energy, Elsevier, vol. 258(C).
    8. Mamani, V. & Gutiérrez, A. & Fernández, A.I. & Ushak, S., 2020. "Industrial carnallite-waste for thermochemical energy storage application," Applied Energy, Elsevier, vol. 265(C).
    9. Han, Xiaojing & Liu, Shuli & Zeng, Cheng & Yang, Liu & Shukla, Ashish & Shen, Yongliang, 2020. "Investigating the performance enhancement of copper fins on trapezoidal thermochemical reactor," Renewable Energy, Elsevier, vol. 150(C), pages 1037-1046.
    10. Romaní, Joaquim & Gasia, Jaume & Solé, Aran & Takasu, Hiroki & Kato, Yukitaka & Cabeza, Luisa F., 2019. "Evaluation of energy density as performance indicator for thermal energy storage at material and system levels," Applied Energy, Elsevier, vol. 235(C), pages 954-962.
    11. Mukherjee, Ankit & Pujari, Ankush Shankar & Shinde, Shraddha Nitin & Kashyap, Uddip & Kumar, Lalit & Subramaniam, Chandramouli & Saha, Sandip K., 2022. "Performance assessment of open thermochemical energy storage system for seasonal space heating in highly humid environment," Renewable Energy, Elsevier, vol. 201(P1), pages 204-223.
    12. Bryan Li & Louise Buisson & Ruby-Jean Clark & Svetlana Ushak & Mohammed Farid, 2024. "A Eutectic Mixture of Calcium Chloride Hexahydrate and Bischofite with Promising Performance for Thermochemical Energy Storage," Energies, MDPI, vol. 17(3), pages 1-18, January.
    13. Pim Donkers & Kun Gao & Jelle Houben & Henk Huinink & Bart Erich & Olaf Adan, 2020. "Effect of Non-Condensable Gasses on the Performance of a Vacuum Thermochemical Reactor," Energies, MDPI, vol. 13(2), pages 1-24, January.
    14. Wang, L.W. & Jiang, L. & Gao, J. & Gao, P. & Wang, R.Z., 2017. "Analysis of resorption working pairs for air conditioners of electric vehicles," Applied Energy, Elsevier, vol. 207(C), pages 594-603.
    15. N’Tsoukpoe, Kokouvi Edem & Kuznik, Frédéric, 2021. "A reality check on long-term thermochemical heat storage for household applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    16. Rozeline Wijnhorst & Menno Demmenie & Etienne Jambon-Puillet & Freek Ariese & Daniel Bonn & Noushine Shahidzadeh, 2023. "Softness of hydrated salt crystals under deliquescence," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    17. Edyta Nartowska & Marta Styś-Maniara & Tomasz Kozłowski, 2023. "The Potential Environmental and Social Influence of the Inorganic Salt Hydrates Used as a Phase Change Material for Thermal Energy Storage in Solar Installations," IJERPH, MDPI, vol. 20(2), pages 1-21, January.
    18. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    19. Jun Li & Tao Zeng & Noriyuki Kobayashi & Haotai Xu & Yu Bai & Lisheng Deng & Zhaohong He & Hongyu Huang, 2019. "Lithium Hydroxide Reaction for Low Temperature Chemical Heat Storage: Hydration and Dehydration Reaction," Energies, MDPI, vol. 12(19), pages 1-13, September.
    20. Englmair, Gerald & Moser, Christoph & Furbo, Simon & Dannemand, Mark & Fan, Jianhua, 2018. "Design and functionality of a segmented heat-storage prototype utilizing stable supercooling of sodium acetate trihydrate in a solar heating system," Applied Energy, Elsevier, vol. 221(C), pages 522-534.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:21:p:7225-:d:1266076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.