IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7168-d1263583.html
   My bibliography  Save this article

Geothermal Energy and Its Potential for Critical Metal Extraction—A Review

Author

Listed:
  • János Szanyi

    (Geothermal Energy Applied Research Centre, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary
    Department of Mineralogy, Geochemistry, and Petrology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary)

  • Ladislaus Rybach

    (Institute of Geophysics, ETH Zurich, Sonneggstrasse 5, CH-8092 Zurich, Switzerland)

  • Hawkar A. Abdulhaq

    (Department of Mineralogy, Geochemistry, and Petrology, University of Szeged, Egyetem Utca, 2, 6722 Szeged, Hungary)

Abstract

In an era of accelerating energy transition and growing demand for critical metals essential for clean technologies, the innovative integration of geothermal energy with critical metal extraction stands as a paradigm shift in sustainable resource utilization. This comprehensive review unravels the synergistic potential of coupling geothermal energy systems with critical metal extraction, thereby transforming a dual crisis of energy and resource scarcity into an opportunity for circular economy. Through rigorous analysis of existing geothermal technologies, and extraction methodologies, the study establishes a coherent framework that merges energy production with environmental stewardship. It scrutinizes current extraction techniques, and evaluates their compatibility with geothermal brine characteristics, proposing optimized pathways for maximum yield. Through detailed case studies and empirical data, the paper elucidates the economic and environmental advantages of this multifaceted approach, from reduced carbon footprint to enhanced energy efficiency and resource recovery. It concludes that combined heat and mineral production technology can open new, unexplored resources, increasing the supply of previously untapped resources, while the potential of geothermal energy for sustainable mineral extraction and energy production is in line with Sustainable Development Goal 7, which aims to ensure access to affordable, reliable, sustainable and modern energy for all.

Suggested Citation

  • János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7168-:d:1263583
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Laurence Kavanagh & Jerome Keohane & Guiomar Garcia Cabellos & Andrew Lloyd & John Cleary, 2018. "Global Lithium Sources—Industrial Use and Future in the Electric Vehicle Industry: A Review," Resources, MDPI, vol. 7(3), pages 1-29, September.
    2. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 543(7645), pages 367-372, March.
    3. Khizar Abid & Aditya Sharma & Shawgi Ahmed & Saket Srivastava & Alberto Toledo Velazco & Catalin Teodoriu, 2022. "A Review on Geothermal Energy and HPHT Packers for Geothermal Applications," Energies, MDPI, vol. 15(19), pages 1-26, October.
    4. García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
    5. Ghorbani, Yousef & Nwaila, Glen T. & Zhang, Steven E. & Bourdeau, Julie E. & Cánovas, Manuel & Arzua, Javier & Nikadat, Nooraddin, 2023. "Moving towards deep underground mineral resources: Drivers, challenges and potential solutions," Resources Policy, Elsevier, vol. 80(C).
    6. York R. Smith & Pankaj Kumar & John D. McLennan, 2017. "On the Extraction of Rare Earth Elements from Geothermal Brines," Resources, MDPI, vol. 6(3), pages 1-16, August.
    7. Ladislaus Rybach, 2022. "Geothermal Heat Pump Production Sustainability—The Basis of the Swiss GHP Success Story," Energies, MDPI, vol. 15(21), pages 1-29, October.
    8. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    9. Ladislaus Rybach, 2014. "Geothermal Power Growth 1995–2013—A Comparison with Other Renewables," Energies, MDPI, vol. 7(8), pages 1-11, July.
    10. Sumina Namboorimadathil Backer & Ines Bouaziz & Nabeela Kallayi & Reny Thankam Thomas & Gopika Preethikumar & Mohd Sobri Takriff & Tahar Laoui & Muataz Ali Atieh, 2022. "Review: Brine Solution: Current Status, Future Management and Technology Development," Sustainability, MDPI, vol. 14(11), pages 1-47, May.
    11. Igogo, Tsisilile & Awuah-Offei, Kwame & Newman, Alexandra & Lowder, Travis & Engel-Cox, Jill, 2021. "Integrating renewable energy into mining operations: Opportunities, challenges, and enabling approaches," Applied Energy, Elsevier, vol. 300(C).
    12. Barbier, Enrico, 1997. "Nature and technology of geothermal energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 1(1-2), pages 1-69, March.
    13. Hongmei Yin & Likai Hu & Yang Li & Yulie Gong & Yanping Du & Chaofan Song & Jun Zhao, 2021. "Application of ORC in a Distributed Integrated Energy System Driven by Deep and Shallow Geothermal Energy," Energies, MDPI, vol. 14(17), pages 1-15, September.
    14. William T. Stringfellow & Patrick F. Dobson, 2021. "Technology for the Recovery of Lithium from Geothermal Brines," Energies, MDPI, vol. 14(20), pages 1-72, October.
    15. Marialaura Di Somma & Amedeo Buonanno & Martina Caliano & Giorgio Graditi & Giorgio Piazza & Stefano Bracco & Federico Delfino, 2022. "Stochastic Operation Optimization of the Smart Savona Campus as an Integrated Local Energy Community Considering Energy Costs and Carbon Emissions," Energies, MDPI, vol. 15(22), pages 1-27, November.
    16. Andrea A. Eras-Almeida & Tatiana Vásquez-Hernández & Merlyn Johanna Hurtado-Moncada & Miguel A. Egido-Aguilera, 2023. "A Comprehensive Evaluation of Off-Grid Photovoltaic Experiences in Non-Interconnected Zones of Colombia: Integrating a Sustainable Perspective," Energies, MDPI, vol. 16(5), pages 1-27, February.
    17. Olasolo, P. & Juárez, M.C. & Morales, M.P. & D´Amico, Sebastiano & Liarte, I.A., 2016. "Enhanced geothermal systems (EGS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 133-144.
    18. Yu, Donglei & Wenhui, Xiong & Anser, Muhammad Khalid & Nassani, Abdelmohsen A. & Imran, Muhammad & Zaman, Khalid & Haffar, Mohamed, 2023. "Navigating the global mineral market: A study of resource wealth and the energy transition," Resources Policy, Elsevier, vol. 82(C).
    19. Saleem H. Ali & Damien Giurco & Nicholas Arndt & Edmund Nickless & Graham Brown & Alecos Demetriades & Ray Durrheim & Maria Amélia Enriquez & Judith Kinnaird & Anna Littleboy & Lawrence D. Meinert & R, 2017. "Correction: Corrigendum: Mineral supply for sustainable development requires resource governance," Nature, Nature, vol. 547(7662), pages 246-246, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Endl, Andreas & Tost, Michael & Hitch, Michael & Moser, Peter & Feiel, Susanne, 2021. "Europe's mining innovation trends and their contribution to the sustainable development goals: Blind spots and strong points," Resources Policy, Elsevier, vol. 74(C).
    2. Guzmán, Juan Ignacio & Karpunina, Alina & Araya, Constanza & Faúndez, Patricio & Bocchetto, Marcela & Camacho, Rodolfo & Desormeaux, Daniela & Galaz, Juanita & Garcés, Ingrid & Kracht, Willy & Lagos, , 2023. "Chile: On the road to global sustainable mining," Resources Policy, Elsevier, vol. 83(C).
    3. Tomer Fishman & Rupert J. Myers & Orlando Rios & T.E. Graedel, 2018. "Implications of Emerging Vehicle Technologies on Rare Earth Supply and Demand in the United States," Resources, MDPI, vol. 7(1), pages 1-15, January.
    4. Dou Shiquan & Xu Deyi, 2023. "The security of critical mineral supply chains," Mineral Economics, Springer;Raw Materials Group (RMG);Luleå University of Technology, vol. 36(3), pages 401-412, September.
    5. Margarita N. Ignatyeva & Vera V. Yurak & Alexey V. Dushin & Irina G. Polyanskaya, 2021. "Assessing challenges and threats for balanced subsoil use," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 17904-17922, December.
    6. Steven B. Young & Shannon Fernandes & Michael O. Wood, 2019. "Jumping the Chain: How Downstream Manufacturers Engage with Deep Suppliers of Conflict Minerals," Resources, MDPI, vol. 8(1), pages 1-24, January.
    7. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Pommeret, Aude & Ricci, Francesco & Schubert, Katheline, 2022. "Critical raw materials for the energy transition," European Economic Review, Elsevier, vol. 141(C).
    9. Liu, Wenjuan & Agusdinata, Datu B. & Eakin, Hallie & Romero, Hugo, 2022. "Sustainable minerals extraction for electric vehicles: A pilot study of consumers’ perceptions of impacts," Resources Policy, Elsevier, vol. 75(C).
    10. Saleem H. Ali, 2018. "Extracting at the borders: Negotiating political and ecological geographies of movement in mineral frontiers," Sustainable Development, John Wiley & Sons, Ltd., vol. 26(5), pages 481-490, September.
    11. Jianbo Yang & Xin Li & Zehui Xiong & Minxi Wang & Qunyi Liu, 2020. "Environmental Pollution Effect Analysis of Lead Compounds in China Based on Life Cycle," IJERPH, MDPI, vol. 17(7), pages 1-17, March.
    12. Shriram S. Rangarajan & Suvetha Poyyamani Sunddararaj & AVV Sudhakar & Chandan Kumar Shiva & Umashankar Subramaniam & E. Randolph Collins & Tomonobu Senjyu, 2022. "Lithium-Ion Batteries—The Crux of Electric Vehicles with Opportunities and Challenges," Clean Technol., MDPI, vol. 4(4), pages 1-23, September.
    13. Claire L. McLeod & Mark. P. S. Krekeler, 2017. "Sources of Extraterrestrial Rare Earth Elements: To the Moon and Beyond," Resources, MDPI, vol. 6(3), pages 1-28, August.
    14. Ewa Knapik & Grzegorz Rotko & Marta Marszałek & Marcin Piotrowski, 2023. "Comparative Study on Lithium Recovery with Ion-Selective Adsorbents and Extractants: Results of Multi-Stage Screening Test with the Use of Brine Simulated Solutions with Increasing Complexity," Energies, MDPI, vol. 16(7), pages 1-20, March.
    15. Stefanie Klose & Stefan Pauliuk, 2021. "Quantifying longevity and circularity of copper for different resource efficiency policies at the material and product levels," Journal of Industrial Ecology, Yale University, vol. 25(4), pages 979-993, August.
    16. van der Merwe, Antoinette & Cabernard, Livia & Günther, Isabel, 2023. "Urban mining: The relevance of information, transaction costs and externalities," Ecological Economics, Elsevier, vol. 205(C).
    17. Linda Wårell, 2021. "Mineral Deposits Safeguarding and Land Use Planning—The Importance of Creating Shared Value," Resources, MDPI, vol. 10(4), pages 1-18, April.
    18. J. Ignacio Del Rio & Paulina Fernandez & Emilio Castillo & Luis Felipe Orellana, 2023. "Assesing Climate Change Risk in the Mining Industry: A Case Study in the Copper Industry in the Antofagasta Region, Chile," Commodities, MDPI, vol. 2(3), pages 1-15, July.
    19. Zeng, Lanyan & Liu, Shi Qiang & Kozan, Erhan & Corry, Paul & Masoud, Mahmoud, 2021. "A comprehensive interdisciplinary review of mine supply chain management," Resources Policy, Elsevier, vol. 74(C).
    20. Kang, Xinyu & Wang, Minxi & Wang, Taixin & Luo, Fanjie & Lin, Jing & Li, Xin, 2022. "Trade trends and competition intensity of international copper flow based on complex network: From the perspective of industry chain," Resources Policy, Elsevier, vol. 79(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7168-:d:1263583. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.