IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i20p7063-d1258509.html
   My bibliography  Save this article

Catalytic Cracking of Palm Oil: Effect of Catalyst Reuse and Reaction Time of the Quality of Biofuels-like Fractions

Author

Listed:
  • Nélio Teixeira Machado

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa № 1, Belém 66075-110, Brazil
    Faculty of Sanitary and Environmental Engineering, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Corrêa № 1, Belém 66075-900, Brazil)

  • Andréia de Andrade Mancio da Mota

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa № 1, Belém 66075-110, Brazil
    Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, Brazil)

  • Jhuliana da Silva Santanna

    (Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, Brazil)

  • Valtiane de Jesus Pantoja da Gama

    (Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, Brazil)

  • José Roberto Zamian

    (Graduate Program in Chemistry Program, Faculty of Chemistry-UFPA, Rua Augusto Corrêa, № 1, CEP, Belém 66075-110, Brazil)

  • Luiz Eduardo Pizarro Borges

    (Laboratory of Catalyst Preparation and Catalytic Cracking, Section of Chemical Engineering-IME, Praça General Tibúrcio №. 80, CEP, Rio de Janeiro 22290-270, Brazil)

  • Silvio Alex Pereira da Mota

    (Graduate Program of Natural Resources Engineering of Amazon, Campus Profissional-UFPA, Universidade Federal do Pará, Rua Augusto Corrêa № 1, Belém 66075-110, Brazil
    Laboratory of Processes and Transformation of Materials (LPTM), Faculdade de Engenharia de Materiais, Universidade Federal do Sul e Sudeste do Pará, Quadra 17, Bloco 4, Lote Especial, Marabá 68505-080, Brazil)

Abstract

This work systematically investigated the influence of catalyst reuse and reaction time on the yield and quality of organic liquid products (OLP) obtained in a cracking pilot plant at 450 °C and 1.0 atm. The distillation of OLP produced 04 (four) distilled fractions (gasoline, kerosene, and green diesel). The biofuels-like fractions are liquid mixtures with high content of hydrocarbons (alkanes, alkenes, and aromatics) with potential application as substitutes for fossil fuels in internal combustion motors. The quality of the biofuels was certified by physical-chemical analysis and FT-IR and GC-MS analysis. The experimental results showed the feasibility of applying the spent sodium carbonate twice in the catalytic cracking of vegetable oils. The physical-chemical properties (density, viscosity, acid value, saponification value, and flash point) of OLP decrease as the reaction time increases. The distillation of OLP yields 62.35% (wt.), producing green-like gasoline, kerosene, and diesel fractions rich in hydrocarbons. Therefore, biofuel-like fractions produced by distillation of OLP have a great potential for replacing partially petroleum-derived fuels.

Suggested Citation

  • Nélio Teixeira Machado & Andréia de Andrade Mancio da Mota & Jhuliana da Silva Santanna & Valtiane de Jesus Pantoja da Gama & José Roberto Zamian & Luiz Eduardo Pizarro Borges & Silvio Alex Pereira da, 2023. "Catalytic Cracking of Palm Oil: Effect of Catalyst Reuse and Reaction Time of the Quality of Biofuels-like Fractions," Energies, MDPI, vol. 16(20), pages 1-37, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7063-:d:1258509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/20/7063/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/20/7063/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stedile, T. & Ender, L. & Meier, H.F. & Simionatto, E.L. & Wiggers, V.R, 2015. "Comparison between physical properties and chemical composition of bio-oils derived from lignocellulose and triglyceride sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 92-108.
    2. Ong, Yee Kang & Bhatia, Subhash, 2010. "The current status and perspectives of biofuel production via catalytic cracking of edible and non-edible oils," Energy, Elsevier, vol. 35(1), pages 111-119.
    3. Varuvel, Edwin Geo & Mrad, Nadia & Tazerout, Mohand & Aloui, Fethi, 2012. "Assessment of liquid fuel (bio-oil) production from waste fish fat and utilization in diesel engine," Applied Energy, Elsevier, vol. 100(C), pages 249-257.
    4. Le-Phuc, Nguyen & Tran, Tri V. & Phan, Thien T. & Ngo, Phuong T. & Ha, Quan L.M. & Luong, Thuy N. & Tran, Thinh H. & Phan, Tuan T., 2021. "High-efficient production of biofuels using spent fluid catalytic cracking (FCC) catalysts and high acid value waste cooking oils," Renewable Energy, Elsevier, vol. 168(C), pages 57-63.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Makarfi Isa, Yusuf & Ganda, Elvis Tinashe, 2018. "Bio-oil as a potential source of petroleum range fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 69-75.
    2. Xu, Junming & Jiang, Jianchun & Zhao, Jiaping, 2016. "Thermochemical conversion of triglycerides for production of drop-in liquid fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 331-340.
    3. Zhou, Xin & Yan, Hao & Sun, Zongzhuang & Feng, Xiang & Zhao, Hui & Liu, Yibin & Chen, Xiaobo & Yang, Chaohe, 2021. "Opportunities for utilizing waste cooking oil in crude to petrochemical process: Novel process design, optimal strategy, techno-economic analysis and life cycle society-environment assessment," Energy, Elsevier, vol. 237(C).
    4. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    5. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    6. Beims, R.F. & Simonato, C.L. & Wiggers, V.R., 2019. "Technology readiness level assessment of pyrolysis of trygliceride biomass to fuels and chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 521-529.
    7. Đặng, Tấn-Hiệp & Nguyễn, Xuân-Hoàn & Chou, Chi-Lin & Chen, Bing-Hung, 2021. "Preparation of cancrinite-type zeolite from diatomaceous earth as transesterification catalysts for biodiesel production," Renewable Energy, Elsevier, vol. 174(C), pages 347-358.
    8. Kamarulzaman, Mohd Kamal & Hafiz, M. & Abdullah, Adam & Chen, Ang Fuk & Awad, Omar I., 2019. "Combustion, performances and emissions characteristics of black soldier fly larvae oil and diesel blends in compression ignition engine," Renewable Energy, Elsevier, vol. 142(C), pages 569-580.
    9. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    10. Singh, Omvir & Agrawal, Ankit & Dhiman, Neha & Vempatapu, Bhanu Prasad & Chiang, Ken & Tripathi, Shailendra & Sarkar, Bipul, 2021. "Production of renewable aromatics from jatropha oil over multifunctional ZnCo/ZSM-5 catalysts," Renewable Energy, Elsevier, vol. 179(C), pages 2124-2135.
    11. Ma, Wenchao & Liu, Bin & Zhang, Ruixue & Gu, Tianbao & Ji, Xiang & Zhong, Lei & Chen, Guanyi & Ma, Longlong & Cheng, Zhanjun & Li, Xiangping, 2018. "Co-upgrading of raw bio-oil with kitchen waste oil through fluid catalytic cracking (FCC)," Applied Energy, Elsevier, vol. 217(C), pages 233-240.
    12. Wetzstein, M. & Wetzstein, H., 2011. "Four myths surrounding U.S. biofuels," Energy Policy, Elsevier, vol. 39(7), pages 4308-4312, July.
    13. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    14. Kumar, Dinesh & Pant, Kamal K., 2016. "Insitu upgradation of biocrude vapor generated from non-edible oil cake's hydrothermal conversion over aluminated mesoporous catalysts," Renewable Energy, Elsevier, vol. 95(C), pages 43-52.
    15. Jian Shi & Hao An & Yali Cao & Cheli Wang, 2022. "Characterization Studies for Derived Biodiesel from the Fluid Catalytic Cracking (FCC) of Waste Cooking Oil through a Fixed Fluidized Bed (FFB)," Energies, MDPI, vol. 15(19), pages 1-11, September.
    16. Fujishima, Hidekatsu & Takekoshi, Kenichi & Kuroki, Tomoyuki & Tanaka, Atsushi & Otsuka, Keiichi & Okubo, Masaaki, 2013. "Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process," Applied Energy, Elsevier, vol. 111(C), pages 394-400.
    17. Awad, Sary & Loubar, Khaled & Tazerout, Mohand, 2014. "Experimental investigation on the combustion, performance and pollutant emissions of biodiesel from animal fat residues on a direct injection diesel engine," Energy, Elsevier, vol. 69(C), pages 826-836.
    18. Shameer, P. Mohamed & Ramesh, K., 2017. "Experimental evaluation on performance, combustion behavior and influence of in-cylinder temperature on NOx emission in a D.I diesel engine using thermal imager for various alternate fuel blends," Energy, Elsevier, vol. 118(C), pages 1334-1344.
    19. Ewunie, Gebresilassie Asnake & Morken, John & Lekang, Odd Ivar & Yigezu, Zerihun Demrew, 2021. "Factors affecting the potential of Jatropha curcas for sustainable biodiesel production: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Jeguirim, Mejdi & Goddard, Mary-Lorène & Tamosiunas, Andrius & Berrich-Betouche, Emna & Azzaz, Ahmed Amine & Praspaliauskas, Marius & Jellali, Salah, 2020. "Olive mill wastewater: From a pollutant to green fuels, agricultural water source and bio-fertilizer. Biofuel production," Renewable Energy, Elsevier, vol. 149(C), pages 716-724.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:20:p:7063-:d:1258509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.