IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i19p6979-d1254911.html
   My bibliography  Save this article

Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review

Author

Listed:
  • Ramakrishnan Iyer

    (Faculty of Environment, Science and Economy (ESE), Renewable Energy Engineering, University of Exeter, Penryn TR10 9FE, UK)

  • Aritra Ghosh

    (Faculty of Environment, Science and Economy (ESE), Renewable Energy Engineering, University of Exeter, Penryn TR10 9FE, UK)

Abstract

Countless years have been spent researching the strategies necessary for improving the energy consumption of buildings globally. There have been numerous attempts at achieving both passive solutions and enhancing and optimising the existing active systems. This paper seeks to review, analyse and summarise the possibilities of using thermoelectricity in two different contexts to the integration with buildings, integrated thermoelectric systems, and non-integrated thermoelectric systems. The utilisation of thermoelectricity in cohorts with existing renewable technologies and the utilisation of thermoelectric systems that operate individually, both have the potential to provide the occupants of a building with conditions pertinent to thermal and visual comfort. The results in this paper are classified according to the integration types of thermoelectric systems within different parts of the fabric of a building while maintaining an active role in enhancing the building envelope and self-contained thermoelectric systems that sustain a passive role for the same. The introduction to this paper also gives a very broad and surface-level insight into categorisation of different kinds of thermoelectric systems that are being studied and researched across the world.

Suggested Citation

  • Ramakrishnan Iyer & Aritra Ghosh, 2023. "Investigation of Integrated and Non-Integrated Thermoelectric Systems for Buildings—A Review," Energies, MDPI, vol. 16(19), pages 1-17, October.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6979-:d:1254911
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/19/6979/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/19/6979/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    2. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wang, Yingzi & Meng, Fangfang & Wu, Jing, 2016. "Thermal performance evaluation of an active building integrated photovoltaic thermoelectric wall system," Applied Energy, Elsevier, vol. 177(C), pages 25-39.
    3. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    4. Ibañez-Puy, María & Bermejo-Busto, Javier & Martín-Gómez, César & Vidaurre-Arbizu, Marina & Sacristán-Fernández, José Antonio, 2017. "Thermoelectric cooling heating unit performance under real conditions," Applied Energy, Elsevier, vol. 200(C), pages 303-314.
    5. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.
    6. Mustafa Majid Rashak Al-Fartoos & Anurag Roy & Tapas K. Mallick & Asif Ali Tahir, 2022. "A Short Review on Thermoelectric Glazing for Sustainable Built Environment," Energies, MDPI, vol. 15(24), pages 1-22, December.
    7. He, Wei & Zhang, Gan & Zhang, Xingxing & Ji, Jie & Li, Guiqiang & Zhao, Xudong, 2015. "Recent development and application of thermoelectric generator and cooler," Applied Energy, Elsevier, vol. 143(C), pages 1-25.
    8. Vassiliades, C. & Agathokleous, R. & Barone, G. & Forzano, C. & Giuzio, G.F. & Palombo, A. & Buonomano, A. & Kalogirou, S., 2022. "Building integration of active solar energy systems: A review of geometrical and architectural characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    9. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duan, Mengfan & Sun, Hongli & Lin, Borong & Wu, Yifan, 2021. "Evaluation on the applicability of thermoelectric air cooling systems for buildings with thermoelectric material optimization," Energy, Elsevier, vol. 221(C).
    2. Zhao, Dongliang & Yin, Xiaobo & Xu, Jingtao & Tan, Gang & Yang, Ronggui, 2020. "Radiative sky cooling-assisted thermoelectric cooling system for building applications," Energy, Elsevier, vol. 190(C).
    3. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    4. Ma, Xiaoli & Zhang, Yufeng & Han, Zhonghe & Zang, Ningbo & Liu, Zhijian, 2023. "Performance modelling on a thermoelectric air conditioning system using high power heat sinks and promoting waste heat utilization," Energy, Elsevier, vol. 268(C).
    5. Zuazua-Ros, Amaia & Martín-Gómez, César & Ibañez-Puy, Elia & Vidaurre-Arbizu, Marina & Gelbstein, Yaniv, 2019. "Investigation of the thermoelectric potential for heating, cooling and ventilation in buildings: Characterization options and applications," Renewable Energy, Elsevier, vol. 131(C), pages 229-239.
    6. Yin, Ershuai & Li, Qiang & Xuan, Yimin, 2018. "Optimal design method for concentrating photovoltaic-thermoelectric hybrid system," Applied Energy, Elsevier, vol. 226(C), pages 320-329.
    7. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    8. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    9. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & Wu, Zhenghong & He, Xihua, 2017. "Performance analysis of a self-adaptive building integrated photovoltaic thermoelectric wall system in hot summer and cold winter zone of China," Energy, Elsevier, vol. 140(P1), pages 584-600.
    10. Cai, Yang & Wang, Wei-Wei & Liu, Cheng-Wei & Ding, Wen-Tao & Liu, Di & Zhao, Fu-Yun, 2020. "Performance evaluation of a thermoelectric ventilation system driven by the concentrated photovoltaic thermoelectric generators for green building operations," Renewable Energy, Elsevier, vol. 147(P1), pages 1565-1583.
    11. Lv, Hao & Wang, Xiao-Dong & Wang, Tian-Hu & Cheng, Chin-Hsiang, 2016. "Improvement of transient supercooling of thermoelectric coolers through variable semiconductor cross-section," Applied Energy, Elsevier, vol. 164(C), pages 501-508.
    12. Sadighi Dizaji, Hamed & Jafarmadar, Samad & Khalilarya, Shahram & Moosavi, Amin, 2016. "An exhaustive experimental study of a novel air-water based thermoelectric cooling unit," Applied Energy, Elsevier, vol. 181(C), pages 357-366.
    13. Prieto, Alejandro & Knaack, Ulrich & Auer, Thomas & Klein, Tillmann, 2019. "COOLFACADE: State-of-the-art review and evaluation of solar cooling technologies on their potential for façade integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 395-414.
    14. Mohadeseh Seyednezhad & Hamidreza Najafi, 2021. "Solar-Powered Thermoelectric-Based Cooling and Heating System for Building Applications: A Parametric Study," Energies, MDPI, vol. 14(17), pages 1-17, September.
    15. Afshari, Faraz & Mandev, Emre & Muratçobanoğlu, Burak & Yetim, Ali Fatih & Ceviz, Mehmet Akif, 2023. "Experimental and numerical study on a novel fanless air-to-air solar thermoelectric refrigerator equipped with boosted heat exchanger," Renewable Energy, Elsevier, vol. 207(C), pages 253-265.
    16. Sun, Hongli & Lin, Borong & Lin, Zhirong & Zhu, Yingxin, 2019. "Experimental study on a novel flat-heat-pipe heating system integrated with phase change material and thermoelectric unit," Energy, Elsevier, vol. 189(C).
    17. Yang, Yang & Chen, Sarula, 2022. "Thermal insulation solutions for opaque envelope of low-energy buildings: A systematic review of methods and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    18. Luo, Yongqiang & Zhang, Ling & Bozlar, Michael & Liu, Zhongbing & Guo, Hongshan & Meggers, Forrest, 2019. "Active building envelope systems toward renewable and sustainable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 470-491.
    19. Sun, Dongfang & Shen, Limei & Sun, Miao & Yao, Yu & Chen, Huanxin & Jin, Shiping, 2018. "An effective method of evaluating the device-level thermophysical properties and performance of micro-thermoelectric coolers," Applied Energy, Elsevier, vol. 219(C), pages 93-104.
    20. Minseong Kim & Yong-Kwon Kang & Jaewon Joung & Jae-Weon Jeong, 2022. "Cooling Performance Prediction for Hydraulic Thermoelectric Radiant Cooling Panels with Experimental Validation," Sustainability, MDPI, vol. 14(23), pages 1-17, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:19:p:6979-:d:1254911. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.