IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i18p6478-d1235176.html
   My bibliography  Save this article

Parametric Analysis and Optimization for Thermal Efficiency Improvement in a Turbocharged Diesel Engine with Peak Cylinder Pressure Constraints

Author

Listed:
  • Linpeng Li

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Bin Mao

    (Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, China)

  • Zongyu Yue

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

  • Zunqing Zheng

    (State Key Laboratory of Engines, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China)

Abstract

While the original equipment manufacturers are developing engines that can withstand higher PCP, the methodology to maximize the thermal efficiency gain with different PCP limits is still not well-known or documented in the literature. This study aims to provide guidance on how to co-optimize air system parameters, compression ratio, and intake valve closing (IVC) timing of heavy-duty turbocharged diesel engines to enhance thermal efficiency with peak cylinder pressure (PCP) constraints. In this study, a one-dimensional turbocharged engine model is established and validated by experimental data. The effects of turbocharger efficiency, boost pressure, high-pressure exhaust gas recirculation (HP EGR) ratio, compression ratio (CR), and IVC timing on diesel engine efficiency are assessed under PCP constraints through parametric analysis. The results indicate that for enhancing engine thermal efficiency under limited PCP, an increment in boost pressure and CR, and late IVC timing compared to baseline is required. By multiple parameter optimization, the best parameter combination under different PCP constraints is proposed. At a PCP limit of 20 MPa, the combination of a compression ratio of 18.57, boost pressure of 298 kPa, and IVC timing of −95.2 °CA ATDC yields a 1.56% (absolute value) improvement in ITEn over the baseline condition. Raising the PCP limits from 20 MPa to 25 MPa requires increasing the compression ratio to 21.92, boost pressure to 308 kPa, and delaying the intake valve closing timing to −88.7 °CA ATDC, which results in an absolute improvement of 0.86% in ITEn. Baseline engine configuration is updated accordingly to validate the thermal efficiency improvement strategy at a 25 MPa PCP limitation. Experimental results demonstrate a 2.2% (absolute value) improvement in brake thermal efficiency and 1.98% (absolute value) improvement in overall energy efficiency.

Suggested Citation

  • Linpeng Li & Bin Mao & Zongyu Yue & Zunqing Zheng, 2023. "Parametric Analysis and Optimization for Thermal Efficiency Improvement in a Turbocharged Diesel Engine with Peak Cylinder Pressure Constraints," Energies, MDPI, vol. 16(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6478-:d:1235176
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/18/6478/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/18/6478/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zamboni, Giorgio & Capobianco, Massimo, 2012. "Experimental study on the effects of HP and LP EGR in an automotive turbocharged diesel engine," Applied Energy, Elsevier, vol. 94(C), pages 117-128.
    2. Haifeng Liu & Junsheng Ma & Laihui Tong & Guixiang Ma & Zunqing Zheng & Mingfa Yao, 2018. "Investigation on the Potential of High Efficiency for Internal Combustion Engines," Energies, MDPI, vol. 11(3), pages 1-20, February.
    3. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liimatainen, Heikki & van Vliet, Oscar & Aplyn, David, 2019. "The potential of electric trucks – An international commodity-level analysis," Applied Energy, Elsevier, vol. 236(C), pages 804-814.
    2. Michel Noussan & Pier Paolo Raimondi & Rossana Scita & Manfred Hafner, 2020. "The Role of Green and Blue Hydrogen in the Energy Transition—A Technological and Geopolitical Perspective," Sustainability, MDPI, vol. 13(1), pages 1-26, December.
    3. Reihani, Amin & Hoard, John & Klinkert, Stefan & Kuan, Chih-Kuang & Styles, Daniel & McConville, Greg, 2020. "Experimental response surface study of the effects of low-pressure exhaust gas recirculation mixing on turbocharger compressor performance," Applied Energy, Elsevier, vol. 261(C).
    4. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    5. Wang, Dawei & Shi, Lei & Zhu, Sipeng & Liu, Bo & Qian, Yuehua & Deng, Kangyao, 2020. "Numerical and thermodynamic study on effects of high and low pressure exhaust gas recirculation on turbocharged marine low-speed engine," Applied Energy, Elsevier, vol. 261(C).
    6. Zhu, Dengting & Zheng, Xinqian, 2019. "Fuel consumption and emission characteristics in asymmetric twin-scroll turbocharged diesel engine with two exhaust gas recirculation circuits," Applied Energy, Elsevier, vol. 238(C), pages 985-995.
    7. Li, Danyang & Chen, Wenying, 2019. "TIMES modeling of the large-scale popularization of electric vehicles under the worldwide prohibition of liquid vehicle sales," Applied Energy, Elsevier, vol. 254(C).
    8. Tobias Meyer & Heiko A. von der Gracht & Evi Hartmann, 2022. "Technology foresight for sustainable road freight transportation: Insights from a global real‐time Delphi study," Futures & Foresight Science, John Wiley & Sons, vol. 4(1), March.
    9. Park, Jungsoo & Song, Soonho & Lee, Kyo Seung, 2015. "Numerical investigation of a dual-loop EGR split strategy using a split index and multi-objective Pareto optimization," Applied Energy, Elsevier, vol. 142(C), pages 21-32.
    10. Zamboni, Giorgio & Moggia, Simone & Capobianco, Massimo, 2016. "Hybrid EGR and turbocharging systems control for low NOX and fuel consumption in an automotive diesel engine," Applied Energy, Elsevier, vol. 165(C), pages 839-848.
    11. Feng, Renhua & Li, Guanghua & Sun, Zhengwei & Hu, Xiulin & Deng, Banglin & Fu, Jianqin, 2023. "Potential of emission reduction of a turbo-charged non-road diesel engine without aftertreatment under multiple operating scenarios," Energy, Elsevier, vol. 263(PB).
    12. Liu, Bolan & Zhang, Fujun & Zhao, Changlu & An, Xiaohui & Pei, Haijun, 2016. "A novel lambda-based EGR (exhaust gas recirculation) modulation method for a turbocharged diesel engine under transient operation," Energy, Elsevier, vol. 96(C), pages 521-530.
    13. Deng, Banglin & Yang, Jing & Zhang, Daming & Feng, Renhua & Fu, Jianqin & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The challenges and strategies of butanol application in conventional engines: The sensitivity study of ignition and valve timing," Applied Energy, Elsevier, vol. 108(C), pages 248-260.
    14. Matteo Prussi & Lorenzo Laveneziana & Lorenzo Testa & David Chiaramonti, 2022. "Comparing e-Fuels and Electrification for Decarbonization of Heavy-Duty Transports," Energies, MDPI, vol. 15(21), pages 1-17, October.
    15. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    16. Raptotasios, Spiridon I. & Sakellaridis, Nikolaos F. & Papagiannakis, Roussos G. & Hountalas, Dimitrios T., 2015. "Application of a multi-zone combustion model to investigate the NOx reduction potential of two-stroke marine diesel engines using EGR," Applied Energy, Elsevier, vol. 157(C), pages 814-823.
    17. Florian Leblanc & Ruben Bibas & Silvana Mima & Matteo Muratori & Shogo Sakamoto & Fuminori Sano & Nico Bauer & Vassilis Daioglou & Shinichiro Fujimori & Matthew J Gidden & Estsushi Kato & Steven K Ros, 2022. "The contribution of bioenergy to the decarbonization of transport: a multi-model assessment," Post-Print hal-03558507, HAL.
    18. Cornolti, L. & Onorati, A. & Cerri, T. & Montenegro, G. & Piscaglia, F., 2013. "1D simulation of a turbocharged Diesel engine with comparison of short and long EGR route solutions," Applied Energy, Elsevier, vol. 111(C), pages 1-15.
    19. Tauzia, Xavier & Maiboom, Alain, 2013. "Experimental study of an automotive Diesel engine efficiency when running under stoichiometric conditions," Applied Energy, Elsevier, vol. 105(C), pages 116-124.
    20. Shi, Hao & Uddeen, Kalim & An, Yanzhao & Pei, Yiqiang & Johansson, Bengt, 2021. "Multiple spark plugs coupled with pressure sensors: A new approach for knock mechanism study on SI engines," Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:18:p:6478-:d:1235176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.