IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v208y2025ics136403212400738x.html
   My bibliography  Save this article

Waste-to-Ammonia: A sustainable pathway for energy transition

Author

Listed:
  • Moosazadeh, Mohammad
  • Mansourimarand, Asal
  • Ajori, Shahram
  • Taghikhani, Vahid
  • Yoo, ChangKyoo

Abstract

Ammonia, with its exceptional storage and transportation characteristics, emerges as a promising hydrogen carrier that can play a crucial role in this transition. This study investigates the techno-economic and environmental feasibility of utilizing produced water (PW), a waste product in oil and gas production, for ammonia production (AP). Accordingly, three distinct scenarios of utilizing the PW to produce ammonia are analyzed: i) fossil fuel-based (FF) AP without CO2 capture (gray), ii) FF-based AP with CO2 capture module (blue), and iii) a solar-thermal based AP (green). Results suggest that the blue system offers a compromise between environmental impact and economic feasibility, achieving a significant reduction in CO2 emissions of 0.605 kg CO2/kg NH3 compared with the 1.87 kg CO2/kg NH3, where gray, blue, and green AP are associated with the values of $435.63/tNH3, $480.41/tNH3, and $955.05/tNH3, respectively. Moreover, this study highlights the influence of carbon tax policy on the cost of the FF-based gray systems, while becoming unprofitable above $104.75/tCO2. Analysis of AP costs across shale formations reveals variations in product cost with salt concentrations, with the Bakken and Haynesville formations exhibiting the highest cost per ton of ammonia of $433 and $426/tNH3 for blue and gray systems, respectively. Notably, it is observed that the formations with high solar radiation and low salinity including Permian and Niobrara show potential for green ammonia with payback periods of 13 and 15 years, respectively. This can be used as reliable benchmark to propose a model for achieving sustainable society.

Suggested Citation

  • Moosazadeh, Mohammad & Mansourimarand, Asal & Ajori, Shahram & Taghikhani, Vahid & Yoo, ChangKyoo, 2025. "Waste-to-Ammonia: A sustainable pathway for energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 208(C).
  • Handle: RePEc:eee:rensus:v:208:y:2025:i:c:s136403212400738x
    DOI: 10.1016/j.rser.2024.115012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212400738X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.115012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mewafy, Abdelrahman & Ismael, Islam & Kaddah, Sahar S. & Hu, Weihao & Chen, Zhe & Abulanwar, Sayed, 2024. "Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Fúnez Guerra, C. & Reyes-Bozo, L. & Vyhmeister, E. & Jaén Caparrós, M. & Salazar, José Luis & Clemente-Jul, C., 2020. "Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan," Renewable Energy, Elsevier, vol. 157(C), pages 404-414.
    3. Ahmed, Shoaib & Li, Tie & Yi, Ping & Chen, Run, 2023. "Environmental impact assessment of green ammonia-powered very large tanker ship for decarbonized future shipping operations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    4. Fasihi, Mahdi & Weiss, Robert & Savolainen, Jouni & Breyer, Christian, 2021. "Global potential of green ammonia based on hybrid PV-wind power plants," Applied Energy, Elsevier, vol. 294(C).
    5. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Blanco, Herib & Leaver, Jonathan & Dodds, Paul E. & Dickinson, Robert & García-Gusano, Diego & Iribarren, Diego & Lind, Arne & Wang, Changlong & Danebergs, Janis & Baumann, Martin, 2022. "A taxonomy of models for investigating hydrogen energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    7. Moosazadeh, Mohammad & Tariq, Shahzeb & Safder, Usman & Yoo, ChangKyoo, 2023. "Techno-economic feasibility and environmental impact evaluation of a hybrid solar thermal membrane-based power desalination system," Energy, Elsevier, vol. 278(PA).
    8. Ansarinasab, Hojat & Fatimah, Manal & Khojasteh-Salkuyeh, Yaser, 2024. "Sustainable production of ammonia and formic acid using three chemical looping reactors and CO2 electroreduction cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Ji-chao, Yang & Sobhani, Behrooz, 2021. "Integration of biomass gasification with a supercritical CO2 and Kalina cycles in a combined heating and power system: A thermodynamic and exergoeconomic analysis," Energy, Elsevier, vol. 222(C).
    10. Chai, Wai Siong & Bao, Yulei & Jin, Pengfei & Tang, Guang & Zhou, Lei, 2021. "A review on ammonia, ammonia-hydrogen and ammonia-methane fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    11. Nami, Hossein & Hendriksen, Peter Vang & Frandsen, Henrik Lund, 2024. "Green ammonia production using current and emerging electrolysis technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    12. Jasper Verschuur & Elco E. Koks & Jim W. Hall, 2021. "Observed impacts of the COVID-19 pandemic on global trade," Nature Human Behaviour, Nature, vol. 5(3), pages 305-307, March.
    13. Moosazadeh, Mohammad & Ajori, Shahram & Taghikhani, Vahid & Moghanloo, Rouzbeh G. & Yoo, ChangKyoo, 2024. "Sustainable hydrogen production from flare gas and produced water: A United States case study," Energy, Elsevier, vol. 306(C).
    14. Mulholland, Eamonn & Teter, Jacob & Cazzola, Pierpaolo & McDonald, Zane & Ó Gallachóir, Brian P., 2018. "The long haul towards decarbonising road freight – A global assessment to 2050," Applied Energy, Elsevier, vol. 216(C), pages 678-693.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deger Saygin & Herib Blanco & Francisco Boshell & Joseph Cordonnier & Kevin Rouwenhorst & Priyank Lathwal & Dolf Gielen, 2023. "Ammonia Production from Clean Hydrogen and the Implications for Global Natural Gas Demand," Sustainability, MDPI, vol. 15(2), pages 1-28, January.
    2. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun & Wang, Tianwei, 2024. "Comparison of different hydrogen-ammonia energy conversion pathways for renewable energy supply," Renewable Energy, Elsevier, vol. 227(C).
    3. Andrea J. Boero & Kevin Kardux & Marina Kovaleva & Daniel A. Salas & Jacco Mooijer & Syed Mashruk & Michael Townsend & Kevin Rouwenhorst & Agustin Valera-Medina & Angel D. Ramirez, 2021. "Environmental Life Cycle Assessment of Ammonia-Based Electricity," Energies, MDPI, vol. 14(20), pages 1-20, October.
    4. Wen, Du & Aziz, Muhammad, 2022. "Techno-economic analyses of power-to-ammonia-to-power and biomass-to-ammonia-to-power pathways for carbon neutrality scenario," Applied Energy, Elsevier, vol. 319(C).
    5. Byun, Manhee & Lim, Dongjun & Lee, Boreum & Kim, Ayeon & Lee, In-Beum & Brigljević, Boris & Lim, Hankwon, 2022. "Economically feasible decarbonization of the Haber-Bosch process through supercritical CO2 Allam cycle integration," Applied Energy, Elsevier, vol. 307(C).
    6. Mewafy, Abdelrahman & Ismael, Islam & Kaddah, Sahar S. & Hu, Weihao & Chen, Zhe & Abulanwar, Sayed, 2024. "Optimal design of multiuse hybrid microgrids power by green hydrogen–ammonia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    7. Moosazadeh, Mohammad & Ajori, Shahram & Taghikhani, Vahid & Moghanloo, Rouzbeh G. & Yoo, ChangKyoo, 2024. "Sustainable hydrogen production from flare gas and produced water: A United States case study," Energy, Elsevier, vol. 306(C).
    8. Guglielmo Maria Caporale & Anamaria Diana Sova & Robert Sova, 2024. "The Covid‐19 pandemic and European trade flows: Evidence from a dynamic panel model," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 29(3), pages 2563-2580, July.
    9. Santos, Alberto & Maia, Pedro & Jacob, Rodrigo & Wei, Huang & Callegari, Camila & Oliveira Fiorini, Ana Carolina & Schaeffer, Roberto & Szklo, Alexandre, 2024. "Road conditions and driving patterns on fuel usage: Lessons from an emerging economy," Energy, Elsevier, vol. 295(C).
    10. Qian, Xiaoyan & Dai, Jie & Jiang, Weimin & Cai, Helen & Ye, Xixi & Shahab Vafadaran, Mohammad, 2024. "Economic viability and investment returns of innovative geothermal tri-generation systems: A comparative study," Renewable Energy, Elsevier, vol. 226(C).
    11. Lopez, Gabriel & Galimova, Tansu & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Towards defossilised steel: Supply chain options for a green European steel industry," Energy, Elsevier, vol. 273(C).
    12. Lan, Penghang & Chen, She & Li, Qihang & Li, Kelin & Wang, Feng & Zhao, Yaoxun, 2024. "Intelligent hydrogen-ammonia combined energy storage system with deep reinforcement learning," Renewable Energy, Elsevier, vol. 237(PB).
    13. Cai, Jianhui & Fei, Jiaming & Li, Liguang & Fei, Cheng & Maghsoudniazi, Mohammadhadi & Su, Zhanguo, 2023. "Multicriteria study of geothermal trigeneration systems with configurations of hybrid vapor compression refrigeration and Kalina cycles for sport arena application," Renewable Energy, Elsevier, vol. 219(P1).
    14. Bokyung Kim & Geunsub Kim & Moohong Kang, 2022. "Study on Comparing the Performance of Fully Automated Container Terminals during the COVID-19 Pandemic," Sustainability, MDPI, vol. 14(15), pages 1-13, August.
    15. Mehdi Jahangir Samet & Heikki Liimatainen & Oscar Patrick René van Vliet & Markus Pöllänen, 2021. "Road Freight Transport Electrification Potential by Using Battery Electric Trucks in Finland and Switzerland," Energies, MDPI, vol. 14(4), pages 1-22, February.
    16. Maslina Mansor & Mohamad Fazli Sabri & Mustazar Mansur & Muslimah Ithnin & Amirah Shazana Magli & Abd Rahim Husniyah & Nurul Shahnaz Mahdzan & Mohd Amim Othman & Roza Hazli Zakaria & Nurulhuda Mohd Sa, 2022. "Analysing the Predictors of Financial Stress and Financial Well-Being among the Bottom 40 Percent (B40) Households in Malaysia," IJERPH, MDPI, vol. 19(19), pages 1-23, September.
    17. Wei, Wenwen & Li, Gesheng & Zhang, Zunhua & Long, Yanxiang & Zhang, Hanyuyang & Huang, Yong & Zhou, Mengni & Wei, Yi, 2023. "Effects of ammonia addition on the performance and emissions for a spark-ignition marine natural gas engine," Energy, Elsevier, vol. 272(C).
    18. Xiong, Kang & Hu, Weihao & Cao, Di & Li, Sichen & Zhang, Guozhou & Liu, Wen & Huang, Qi & Chen, Zhe, 2023. "Coordinated energy management strategy for multi-energy hub with thermo-electrochemical effect based power-to-ammonia: A multi-agent deep reinforcement learning enabled approach," Renewable Energy, Elsevier, vol. 214(C), pages 216-232.
    19. Yan Lu & Bo Ning & Pengyun Geng & Yan Li & Jiajie Kong, 2025. "Research on the Current Status and Key Issues of China’s Green Electricity Trading Development," Energies, MDPI, vol. 18(7), pages 1-21, March.
    20. You, Jinfang & Gao, Jintong & Li, Renpeng & Wang, Ruzhu & Xu, Zhenyuan, 2025. "Air-source heat pump assisted absorption heat storage for discharging under low ambient temperature," Applied Energy, Elsevier, vol. 380(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:208:y:2025:i:c:s136403212400738x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.