IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i17p6337-d1230271.html
   My bibliography  Save this article

Predicting Residential Photovoltaic Adoption Intention of Potential Prosumers in Thailand: A Theory of Planned Behavior Model

Author

Listed:
  • Thipnapa Huansuriya

    (Faculty of Psychology, Chulalongkorn University, Bangkok 10330, Thailand)

  • Kris Ariyabuddhiphongs

    (Faculty of Psychology, Chulalongkorn University, Bangkok 10330, Thailand)

Abstract

The current study investigates economic expectations and socio-psychological factors influencing individuals’ residential photovoltaic (RPV) adoption intentions in Thailand. The theory of planned behavior (TPB) and the diffusion of innovation theory provide a framework for our predictor selection. We obtained the data from a nationwide survey on electricity prosumer infrastructure. RPV non-users ( N = 760) were asked to rate their RPV knowledge, attitudes, perceived behavioral controls (PBCs), norms, and innovativeness. They then read scenarios describing the current RPV installation cost and payback rate. They rated their adoption intention and specified their intended system capacity, affordable installation cost, and desirable payback period. The gaps between the actual and desired installation costs and the internal rate of return were calculated. These economic expectation gaps, attitudes based on financial benefits, PBC based on perceived financial barriers, social norms, and innovativeness significantly predicted the adoption intention. On the other hand, perceived knowledge, attitudes based on environmental and image benefits, and PBC based on anticipated troubles and inconveniences failed to predict intention. The implications of the TPB model for RPV adoption were discussed.

Suggested Citation

  • Thipnapa Huansuriya & Kris Ariyabuddhiphongs, 2023. "Predicting Residential Photovoltaic Adoption Intention of Potential Prosumers in Thailand: A Theory of Planned Behavior Model," Energies, MDPI, vol. 16(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6337-:d:1230271
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/17/6337/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/17/6337/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jager, Wander, 2006. "Stimulating the diffusion of photovoltaic systems: A behavioural perspective," Energy Policy, Elsevier, vol. 34(14), pages 1935-1943, September.
    2. Yang, J. & Chen, F., 2021. "How are social-psychological factors related to consumer preferences for plug-in electric vehicles? Case studies from two cities in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    3. Chankook Park & Min Jeong, 2021. "A Study of Factors Influencing on Passive and Active Acceptance of Home Energy Management Services with Internet of Things," Energies, MDPI, vol. 14(12), pages 1-17, June.
    4. Wang, Jianjun & Liu, Fang & Li, Li & Zhang, Jian, 2022. "More than innovativeness: Comparing residents’ motivations for participating renewable energy communities in different innovation segments," Renewable Energy, Elsevier, vol. 197(C), pages 552-563.
    5. Ajzen, Icek, 1991. "The theory of planned behavior," Organizational Behavior and Human Decision Processes, Elsevier, vol. 50(2), pages 179-211, December.
    6. Zhang, Xiaoling & Shen, Liyin & Chan, Sum Yee, 2012. "The diffusion of solar energy use in HK: What are the barriers?," Energy Policy, Elsevier, vol. 41(C), pages 241-249.
    7. Rebane, Kaja L. & Barham, Bradford L., 2011. "Knowledge and adoption of solar home systems in rural Nicaragua," Energy Policy, Elsevier, vol. 39(6), pages 3064-3075, June.
    8. Erdem, Cumhur & Sentürk, Ismail & Simsek, Türker, 2010. "Identifying the factors affecting the willingness to pay for fuel-efficient vehicles in Turkey: A case of hybrids," Energy Policy, Elsevier, vol. 38(6), pages 3038-3043, June.
    9. Kirsi Kotilainen & Ulla A. Saari, 2018. "Policy Influence on Consumers’ Evolution into Prosumers—Empirical Findings from an Exploratory Survey in Europe," Sustainability, MDPI, vol. 10(1), pages 1-22, January.
    10. Faiers, Adam & Neame, Charles, 2006. "Consumer attitudes towards domestic solar power systems," Energy Policy, Elsevier, vol. 34(14), pages 1797-1806, September.
    11. Palm, Jenny, 2018. "Household installation of solar panels – Motives and barriers in a 10-year perspective," Energy Policy, Elsevier, vol. 113(C), pages 1-8.
    12. Paul C. Stern, 1986. "Blind spots in policy analysis: What economics doesn't say about energy use," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 5(2), pages 200-227.
    13. Natarajan, Thamaraiselvan & Balasubramanian, Senthil Arasu & Kasilingam, Dharun Lingam, 2017. "Understanding the intention to use mobile shopping applications and its influence on price sensitivity," Journal of Retailing and Consumer Services, Elsevier, vol. 37(C), pages 8-22.
    14. Balcombe, Paul & Rigby, Dan & Azapagic, Adisa, 2014. "Investigating the importance of motivations and barriers related to microgeneration uptake in the UK," Applied Energy, Elsevier, vol. 130(C), pages 403-418.
    15. Hackbarth, André & Löbbe, Sabine, 2020. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Energy Policy, Elsevier, vol. 138(C).
    16. Korcaj, Liridon & Hahnel, Ulf J.J. & Spada, Hans, 2015. "Intentions to adopt photovoltaic systems depend on homeowners' expected personal gains and behavior of peers," Renewable Energy, Elsevier, vol. 75(C), pages 407-415.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alipour, M. & Salim, H. & Stewart, Rodney A. & Sahin, Oz, 2020. "Predictors, taxonomy of predictors, and correlations of predictors with the decision behaviour of residential solar photovoltaics adoption: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    2. Alipour, Mohammad & Taghikhah, Firouzeh & Irannezhad, Elnaz & Stewart, Rodney A. & Sahin, Oz, 2022. "How the decision to accept or reject PV affects the behaviour of residential battery system adopters," Applied Energy, Elsevier, vol. 318(C).
    3. José Ángel Gimeno & Eva Llera & Sabina Scarpellini, 2018. "Investment Determinants in Self-Consumption Facilities: Characterization and Qualitative Analysis in Spain," Energies, MDPI, vol. 11(8), pages 1-24, August.
    4. Karjalainen, Sami & Ahvenniemi, Hannele, 2019. "Pleasure is the profit - The adoption of solar PV systems by households in Finland," Renewable Energy, Elsevier, vol. 133(C), pages 44-52.
    5. Khuong, Phuong M. & Scheller, Fabian & McKenna, Russell & Keles, Dogan & Fichtner, Wolf, 2020. "Willingness to pay for residential PV: Reconciling gaps between acceptance and adoption," Working Paper Series in Production and Energy 46, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    6. Felipe Moraes do Nascimento & Julio Cezar Mairesse Siluk & Fernando de Souza Savian & Taís Bisognin Garlet & José Renes Pinheiro & Carlos Ramos, 2020. "Factors for Measuring Photovoltaic Adoption from the Perspective of Operators," Sustainability, MDPI, vol. 12(8), pages 1-29, April.
    7. Garlet, Taís Bisognin & Ribeiro, José Luis Duarte & de Souza Savian, Fernando & Mairesse Siluk, Julio Cezar, 2019. "Paths and barriers to the diffusion of distributed generation of photovoltaic energy in southern Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 157-169.
    8. Chen, Chien-fei & Li, Jiaxin & Shuai, Jing & Nelson, Hannah & Walzem, Allen & Cheng, Jinhua, 2021. "Linking social-psychological factors with policy expectation: Using local voices to understand solar PV poverty alleviation in Wuhan, China," Energy Policy, Elsevier, vol. 151(C).
    9. Zhang, Nan & Hwang, Bon-Gang & Lu, Yujie & Ngo, Jasmine, 2022. "A Behavior theory integrated ANN analytical approach for understanding households adoption decisions of residential photovoltaic (RPV) system," Technology in Society, Elsevier, vol. 70(C).
    10. Palm, A., 2020. "Early adopters and their motives: Differences between earlier and later adopters of residential solar photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    11. Palm, Alvar & Lantz, Björn, 2020. "Information dissemination and residential solar PV adoption rates: The effect of an information campaign in Sweden," Energy Policy, Elsevier, vol. 142(C).
    12. Natália Gava Gastaldo & Graciele Rediske & Paula Donaduzzi Rigo & Carmen Brum Rosa & Leandro Michels & Julio Cezar Mairesse Siluk, 2019. "What is the Profile of the Investor in Household Solar Photovoltaic Energy Systems?," Energies, MDPI, vol. 12(23), pages 1-18, November.
    13. Strazzera, Elisabetta & Statzu, Vania, 2017. "Fostering photovoltaic technologies in Mediterranean cities: Consumers’ demand and social acceptance," Renewable Energy, Elsevier, vol. 102(PB), pages 361-371.
    14. Hackbarth, André, 2018. "Attitudes, preferences, and intentions of German households concerning participation in peer-to-peer electricity trading," Reutlingen Working Papers on Marketing & Management 2019-2, Reutlingen University, ESB Business School.
    15. Liu, Diyi & Qi, Suntong & Xu, Tiantong, 2023. "In the post-subsidy era: How to encourage mere consumers to become prosumers when subsidy reduced?," Energy Policy, Elsevier, vol. 174(C).
    16. Noppers, Ernst H. & Keizer, Kees & Milovanovic, Marko & Steg, Linda, 2016. "The importance of instrumental, symbolic, and environmental attributes for the adoption of smart energy systems," Energy Policy, Elsevier, vol. 98(C), pages 12-18.
    17. Adewole, Ayooluwa & Shipworth, Michelle & Lemaire, Xavier & Sanderson, Danielle, 2023. "Peer-to-Peer energy trading, independence aspirations and financial benefits among Nigerian households," Energy Policy, Elsevier, vol. 174(C).
    18. Ashwini K. Aggarwal & Asif Ali Syed & Sandeep Garg, 2021. "Diffusion of RT Solar PV in Suburbs of Delhi/NCR, India: Triggers of Architect Recommendation Intent," Vision, , vol. 25(3), pages 285-299, September.
    19. Yamashiro, Ririka & Mori, Akihisa, 2023. "Combined third-party ownership and aggregation business model for the adoption of rooftop solar PV–battery systems: Implications from the case of Miyakojima Island, Japan," Energy Policy, Elsevier, vol. 173(C).
    20. Véronique Vasseur & Anne-Francoise Marique & Vladimir Udalov, 2019. "A Conceptual Framework to Understand Households’ Energy Consumption," Energies, MDPI, vol. 12(22), pages 1-22, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:17:p:6337-:d:1230271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.