IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5569-d1200735.html
   My bibliography  Save this article

Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador

Author

Listed:
  • Antonia Cevallos-Escandón

    (Carrera de Ingeniería Ambiental, Politecnica Salesiana University (Universidad Politécnica Salesiana), Cuenca 010114, Ecuador)

  • Edgar Antonio Barragan-Escandón

    (Grupo de Investigación en Energía-GIE, Politecnica Salesiana University (Universidad Politécnica Salesiana), Cuenca 010114, Ecuador)

  • Esteban Zalamea-León

    (School of Architecture and Urbanism, University of Cuenca (University de Cuenca), Cuenca 010112, Ecuador)

  • Xavier Serrano-Guerrero

    (Grupo de Investigación en Energía-GIE, Politecnica Salesiana University (Universidad Politécnica Salesiana), Cuenca 010114, Ecuador)

  • Julio Terrados-Cepeda

    (Department of Graphic Engineering, Design and Projects, Jaen University (University de Jaén), 23001 Jaén, Spain)

Abstract

A main restriction of renewables from intermittent sources is the mismatch between energy resource availability and energy requirements, especially when extensive power plants are producing at their highest potential causing huge energy surpluses. In these cases, excess power must be stored or curtailed. One alternative is increasing urban solar potential which could be integrated to feed electric buses directly or alternatively through hydrogen (H 2 ) as an energy vector. H 2 from renewable electricity can be stored and used directly or through fuel cells. This study aims to determine the H 2 capability that could be achieved when integrating large-scale photovoltaic (PV) generation in urban areas. This analysis was carried out by determining the PV energy potentially generated by installing PV in Cuenca City downtown (Ecuador). Cuenca is in the process of adopting renewal of the public transport vehicle fleet, introducing a new model with an electric tram main network combined with “clean type buses”. The conventional diesel urban transport could be replaced, establishing a required vehicle fleet of 475 buses spread over 29 routes, emitting 112 tons of CO2 and burning 11,175 gallons of diesel daily. Between the main findings, we concluded that the electricity that could be produced in the total roof area exceeds the actual demand in the study area by 5.5 times. Taking into account the energy surplus, it was determined that the available PV power will cover from 97% to 127% of the total demand necessary to mobilize the city bus fleet. The novelty of this work is the proposal of a combined methodology to find the potential to feed urban transport with urban solar power in cities, close to the equatorial line.

Suggested Citation

  • Antonia Cevallos-Escandón & Edgar Antonio Barragan-Escandón & Esteban Zalamea-León & Xavier Serrano-Guerrero & Julio Terrados-Cepeda, 2023. "Assessing the Feasibility of Hydrogen and Electric Buses for Urban Public Transportation using Rooftop Integrated Photovoltaic Energy in Cuenca Ecuador," Energies, MDPI, vol. 16(14), pages 1-14, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5569-:d:1200735
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    2. Scholten, Daniel & Bosman, Rick, 2016. "The geopolitics of renewables; exploring the political implications of renewable energy systems," Technological Forecasting and Social Change, Elsevier, vol. 103(C), pages 273-283.
    3. Pelaez-Samaniego, Manuel Raul & Riveros-Godoy, Gustavo & Torres-Contreras, Santiago & Garcia-Perez, Tsai & Albornoz-Vintimilla, Esteban, 2014. "Production and use of electrolytic hydrogen in Ecuador towards a low carbon economy," Energy, Elsevier, vol. 64(C), pages 626-631.
    4. Khan, Jibran & Arsalan, Mudassar Hassan, 2016. "Estimation of rooftop solar photovoltaic potential using geo-spatial techniques: A perspective from planned neighborhood of Karachi – Pakistan," Renewable Energy, Elsevier, vol. 90(C), pages 188-203.
    5. Bhattacharya, Mita & Paramati, Sudharshan Reddy & Ozturk, Ilhan & Bhattacharya, Sankar, 2016. "The effect of renewable energy consumption on economic growth: Evidence from top 38 countries," Applied Energy, Elsevier, vol. 162(C), pages 733-741.
    6. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    7. Tom Fletcher & Kambiz Ebrahimi, 2020. "The Effect of Fuel Cell and Battery Size on Efficiency and Cell Lifetime for an L7e Fuel Cell Hybrid Vehicle," Energies, MDPI, vol. 13(22), pages 1-18, November.
    8. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barragán-Escandón, Edgar A. & Zalamea-León, Esteban F. & Terrados-Cepeda, Julio & Vanegas-Peralta, P.F., 2020. "Energy self-supply estimation in intermediate cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 129(C).
    2. Antonio Barragán-Escandón & Esteban Zalamea-León & Julio Terrados-Cepeda, 2019. "Incidence of Photovoltaics in Cities Based on Indicators of Occupancy and Urban Sustainability," Energies, MDPI, vol. 12(5), pages 1-26, February.
    3. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    4. Abdullah Shaher & Saad Alqahtani & Ali Garada & Liana Cipcigan, 2023. "Rooftop Solar Photovoltaic in Saudi Arabia to Supply Electricity Demand in Localised Urban Areas: A Study of the City of Abha," Energies, MDPI, vol. 16(11), pages 1-24, May.
    5. McPherson, Madeleine & Ismail, Malik & Hoornweg, Daniel & Metcalfe, Murray, 2018. "Planning for variable renewable energy and electric vehicle integration under varying degrees of decentralization: A case study in Lusaka, Zambia," Energy, Elsevier, vol. 151(C), pages 332-346.
    6. Primož Mavsar & Klemen Sredenšek & Bojan Štumberger & Miralem Hadžiselimović & Sebastijan Seme, 2019. "Simplified Method for Analyzing the Availability of Rooftop Photovoltaic Potential," Energies, MDPI, vol. 12(22), pages 1-17, November.
    7. Gómez-Navarro, Tomás & Brazzini, Tommaso & Alfonso-Solar, David & Vargas-Salgado, Carlos, 2021. "Analysis of the potential for PV rooftop prosumer production: Technical, economic and environmental assessment for the city of Valencia (Spain)," Renewable Energy, Elsevier, vol. 174(C), pages 372-381.
    8. Sredenšek, Klemen & Štumberger, Bojan & Hadžiselimović, Miralem & Mavsar, Primož & Seme, Sebastijan, 2022. "Physical, geographical, technical, and economic potential for the optimal configuration of photovoltaic systems using a digital surface model and optimization method," Energy, Elsevier, vol. 242(C).
    9. Gassar, Abdo Abdullah Ahmed & Cha, Seung Hyun, 2021. "Review of geographic information systems-based rooftop solar photovoltaic potential estimation approaches at urban scales," Applied Energy, Elsevier, vol. 291(C).
    10. Villanthenkodath, Muhammed Ashiq & Mahalik, Mantu Kumar, 2021. "Does economic growth respond to electricity consumption asymmetrically in Bangladesh? The implication for environmental sustainability," Energy, Elsevier, vol. 233(C).
    11. Shahbaz, Muhammad & Hoang, Thi Hong Van & Mahalik, Mantu Kumar & Roubaud, David, 2017. "Energy consumption, financial development and economic growth in India: New evidence from a nonlinear and asymmetric analysis," Energy Economics, Elsevier, vol. 63(C), pages 199-212.
    12. Hosein Mohammadi & Sayed Saghaian & Bahareh Zandi Dareh Gharibi, 2023. "Renewable and Non-Renewable Energy Consumption and Its Impact on Economic Growth," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    13. Panagiotis Trivellas & Georgios Malindretos & Panagiotis Reklitis, 2020. "Implications of Green Logistics Management on Sustainable Business and Supply Chain Performance: Evidence from a Survey in the Greek Agri-Food Sector," Sustainability, MDPI, vol. 12(24), pages 1-29, December.
    14. Constantinos A. Balaras & Andreas I. Theodoropoulos & Elena G. Dascalaki, 2023. "Geographic Information Systems for Facilitating Audits of the Urban Built Environment," Energies, MDPI, vol. 16(11), pages 1-26, May.
    15. Okumus, Fevzi & Kocak, Emrah, 2023. "Tourism and economic output: Do asymmetries matter?," Annals of Tourism Research, Elsevier, vol. 100(C).
    16. Wei Wang & Kehui Wei & Oleksandr Kubatko & Vladyslav Piven & Yulija Chortok & Oleksandr Derykolenko, 2023. "Economic Growth and Sustainable Transition: Investigating Classical and Novel Factors in Developed Countries," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    17. Gerard Bikorimana & Charles Rutikanga & Didier Mwizerwa, 2020. "Linking energy consumption with economic growth: Rwanda as a case study," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 2020(2), pages 181-200.
    18. Adekoya, Oluwasegun B. & Olabode, Joshua K. & Rafi, Syed K., 2021. "Renewable energy consumption, carbon emissions and human development: Empirical comparison of the trajectories of world regions," Renewable Energy, Elsevier, vol. 179(C), pages 1836-1848.
    19. Saidi Kais & Ben Mbarek Mounir, 2017. "Causal interactions between environmental degradation, renewable energy, nuclear energy and real GDP: a dynamic panel data approach," Environment Systems and Decisions, Springer, vol. 37(1), pages 51-67, March.
    20. Juangsa, Firman Bagja & Prananto, Lukman Adi & Mufrodi, Zahrul & Budiman, Arief & Oda, Takuya & Aziz, Muhammad, 2018. "Highly energy-efficient combination of dehydrogenation of methylcyclohexane and hydrogen-based power generation," Applied Energy, Elsevier, vol. 226(C), pages 31-38.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5569-:d:1200735. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.