IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i14p5324-d1192264.html
   My bibliography  Save this article

A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems

Author

Listed:
  • Abdulkarim Athwer

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

  • Ahmed Darwish

    (School of Engineering, Lancaster University, Lancaster LA1 4YW, UK)

Abstract

This paper presents a comprehensive review on the employment of wide bandgap (WBG) semiconductor power devices in wind energy conversion systems (WECSs). Silicon-carbide- (SiC) and gallium-nitride (GaN)-based power devices are highlighted and studied in this review, focusing on their application in the wind energy system. This is due to their premium characteristics such as the operation at high switching frequency, which can reduce the switching losses, and the capability to operate at high temperatures compared with silicon (Si)-based devices. These advantages promote the replacement of the conventional Si-based devices with the WBG semiconductor devices in the new modular converter topologies due to the persistent demand for a more-efficient power converter topology with lower losses and smaller sizes. The main objective of this paper was to provide a comprehensive overview of the WBG power devices commercially available on the market and employed in the modular converter topologies for renewable energy systems. The paper also provides a comparison between the WBG power technologies and the traditional ones based on the Si devices. The paper starts from the conventional modular power converter topology circuits, and then, it discusses the opportunities for integrating the SiC and WBG devices in the modular power converters to improve and enhance the system’s performance.

Suggested Citation

  • Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5324-:d:1192264
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/14/5324/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/14/5324/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    2. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1, December.
    3. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2018. "Power electronics converters: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2028-2044.
    4. Subhashree Choudhury & Mohit Bajaj & Taraprasanna Dash & Salah Kamel & Francisco Jurado, 2021. "Multilevel Inverter: A Survey on Classical and Advanced Topologies, Control Schemes, Applications to Power System and Future Prospects," Energies, MDPI, vol. 14(18), pages 1-48, September.
    5. Christopher Jung & Dirk Schindler, 2022. "Development of onshore wind turbine fleet counteracts climate change-induced reduction in global capacity factor," Nature Energy, Nature, vol. 7(7), pages 608-619, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raúl Gregor & Sergio Toledo & Edgar Maqueda & Julio Pacher, 2023. "Part I—Advancements in Power Converter Technologies: A Focus on SiC-MOSFET-Based Voltage Source Converters," Energies, MDPI, vol. 16(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    2. Flavio A. Garcia-Santiago & Julio C. Rosas-Caro & Jesus E. Valdez-Resendiz & Jonathan C. Mayo-Maldonado & Antonio Valderrabano-Gonzalez & Hector R. Robles-Campos, 2022. "Single-Phase Five-Level Multilevel Inverter Based on a Transistors Six-Pack Module," Energies, MDPI, vol. 15(24), pages 1-21, December.
    3. Riggs, William & Kawashima, Matt & Batstone, David, 2021. "Exploring best practice for municipal e-scooter policy in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 18-27.
    4. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    5. Christopher Jung & Dirk Schindler, 2023. "Reasons for the Recent Onshore Wind Capacity Factor Increase," Energies, MDPI, vol. 16(14), pages 1-17, July.
    6. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    7. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.
    8. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    9. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    10. Jones, Ben & Elliott, Robert J.R. & Nguyen-Tien, Viet, 2020. "The EV revolution: The road ahead for critical raw materials demand," Applied Energy, Elsevier, vol. 280(C).
    11. Abualkasim Bakeer & Andrii Chub & Dmitri Vinnikov, 2020. "Step-Up Series Resonant DC–DC Converter with Bidirectional-Switch-Based Boost Rectifier for Wide Input Voltage Range Photovoltaic Applications," Energies, MDPI, vol. 13(14), pages 1-14, July.
    12. Guo, Yi & Ming, Bo & Huang, Qiang & Liu, Pan & Wang, Yimin & Fang, Wei & Zhang, Wei, 2022. "Evaluating effects of battery storage on day-ahead generation scheduling of large hydro–wind–photovoltaic complementary systems," Applied Energy, Elsevier, vol. 324(C).
    13. Liu, Fa & Sun, Fubao & Wang, Xunming, 2023. "Impact of turbine technology on wind energy potential and CO2 emission reduction under different wind resource conditions in China," Applied Energy, Elsevier, vol. 348(C).
    14. Xingxing Chen & Shuguang Song, 2023. "Detection of Stealthy False Data Injection Attacks in Modular Multilevel Converters," Energies, MDPI, vol. 16(17), pages 1-18, September.
    15. Subhashree Choudhury & Shiba Kumar Acharya & Rajendra Kumar Khadanga & Satyajit Mohanty & Jehangir Arshad & Ateeq Ur Rehman & Muhammad Shafiq & Jin-Ghoo Choi, 2021. "Harmonic Profile Enhancement of Grid Connected Fuel Cell through Cascaded H-Bridge Multi-Level Inverter and Improved Squirrel Search Optimization Technique," Energies, MDPI, vol. 14(23), pages 1-21, November.
    16. Shaik Nyamathulla & Dhanamjayulu Chittathuru, 2023. "A Review of Multilevel Inverter Topologies for Grid-Connected Sustainable Solar Photovoltaic Systems," Sustainability, MDPI, vol. 15(18), pages 1-44, September.
    17. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.
    18. Pingfan Xu & Xiaoyi Liu & Samson Shenglong Yu & Lisheng Pang, 2022. "ZVS Realization of H-Bridge Low-Voltage High-Current Converter via Phase-Shift and Saturable Control," Energies, MDPI, vol. 15(24), pages 1-11, December.
    19. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    20. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:14:p:5324-:d:1192264. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.