IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v213y2025ics1364032125000929.html
   My bibliography  Save this article

Conventional, wide-bandgap, and hybrid power converters: A comprehensive review

Author

Listed:
  • Suthar, Anvi N.
  • Venkataramanaiah, J.
  • Suresh, Y.

Abstract

This review delves into cutting-edge wide band gap (WBG) technology, a third-generation switching device, exploring its fundamental properties and system-level applications. Emphasizing silicon carbide (SiC) and gallium nitride (GaN) materials, the review highlights their superior energy efficiency in power electronic converters compared to traditional silicon (Si) materials. WBG-based converters achieve higher efficiency and reducing energy losses as compared to Si-based converters. These devices operate effectively at higher switching frequencies and reducing passive component size in direct current (DC) - alternating current (AC) applications at higher cost. Thereby, this study identifies hybrid converters combining Si and WBG switches as cost-effective solutions, achieving efficiency gains of higher percentages over fully Si-based designs. The review presents a parametric comparison among traditional, fully WBG-based, and hybrid converters, examining various aspects such as switching frequency, blocking voltages, losses, efficiency, reliability, cost, thermal constraints and device count which remain essential for the broader adoption in various applications.

Suggested Citation

  • Suthar, Anvi N. & Venkataramanaiah, J. & Suresh, Y., 2025. "Conventional, wide-bandgap, and hybrid power converters: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125000929
    DOI: 10.1016/j.rser.2025.115419
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032125000929
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2025.115419?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1-26, December.
    2. Olcay Bay & Manh Tuan Tran & Mohamed El Baghdadi & Sajib Chakraborty & Omar Hegazy, 2023. "A Comprehensive Review of GaN-Based Bi-directional On-Board Charger Topologies and Modulation Methods," Energies, MDPI, vol. 16(8), pages 1-45, April.
    3. Ingilala Jagadeesh & Vairavasundaram Indragandhi, 2022. "Comparative Study of DC-DC Converters for Solar PV with Microgrid Applications," Energies, MDPI, vol. 15(20), pages 1-21, October.
    4. Zhang, Guidong & Li, Zhong & Zhang, Bo & Halang, Wolfgang A., 2018. "Power electronics converters: Past, present and future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2028-2044.
    5. Omar Sarwar Chaudhary & Mouloud Denaï & Shady S. Refaat & Georgios Pissanidis, 2023. "Technology and Applications of Wide Bandgap Semiconductor Materials: Current State and Future Trends," Energies, MDPI, vol. 16(18), pages 1-27, September.
    6. Yalin Wang & Yi Ding & Yi Yin, 2022. "Reliability of Wide Band Gap Power Electronic Semiconductor and Packaging: A Review," Energies, MDPI, vol. 15(18), pages 1-23, September.
    7. Alberto Castellazzi & Emre Gurpinar & Zhenyu Wang & Abdallah Suliman Hussein & Pablo Garcia Fernandez, 2019. "Impact of Wide-Bandgap Technology on Renewable Energy and Smart-Grid Power Conversion Applications Including Storage," Energies, MDPI, vol. 12(23), pages 1-14, November.
    8. Chunyang Gu & Pat Wheeler & Alberto Castellazzi & Alan J. Watson & Francis Effah, 2017. "Semiconductor Devices in Solid-State/Hybrid Circuit Breakers: Current Status and Future Trends," Energies, MDPI, vol. 10(4), pages 1-25, April.
    9. Pawel Szczesniak, 2019. "Challenges and Design Requirements for Industrial Applications of AC/AC Power Converters without DC-Link," Energies, MDPI, vol. 12(8), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    2. Tianqi Huang & Bhanu Pratap Singh & Yongqian Liu & Staffan Norrga, 2024. "Failure Characterization of Discrete SiC MOSFETs under Forward Power Cycling Test," Energies, MDPI, vol. 17(11), pages 1-22, May.
    3. Lv, Shuai & Liu, Shujie & Li, Hongkun & Wang, Yu & Liu, Gengshuo & Dai, Wei, 2025. "A novel method for predicting the remaining useful life of MOSFETs based on a linear multi-fractional Lévy stable motion driven by a GRU similarity transfer network," Reliability Engineering and System Safety, Elsevier, vol. 257(PA).
    4. Amir, Asim & Amir, Aamir & Che, Hang Seng & Elkhateb, Ahmad & Rahim, Nasrudin Abd, 2019. "Comparative analysis of high voltage gain DC-DC converter topologies for photovoltaic systems," Renewable Energy, Elsevier, vol. 136(C), pages 1147-1163.
    5. Riggs, William & Kawashima, Matt & Batstone, David, 2021. "Exploring best practice for municipal e-scooter policy in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 18-27.
    6. Weifeng Fan & Yilong Shi & Yanming Chen, 2023. "A Method for CM EMI Suppression on PFC Converter Using Lossless Snubber with Chaotic Spread Spectrum," Energies, MDPI, vol. 16(8), pages 1-14, April.
    7. Jesús A. González-Castro & Guillermo J. Rubio-Astorga & Martin A. Alarcón-Carbajal & Juan Diego Sánchez-Torres & Modesto Medina-Melendrez & Juan C. Cabanillas-Noris & David E. Castro-Palazuelos, 2024. "Low-Cost Platform Implementation of Discrete Controllers for DC-DC Boost Converter," Energies, MDPI, vol. 17(16), pages 1-20, August.
    8. Ran, Cuiling & Zhang, Yanzi & Yin, Ying, 2021. "Demand response to improve the shared electric vehicle planning: Managerial insights, sustainable benefits," Applied Energy, Elsevier, vol. 292(C).
    9. Qi, Qi & Long, Chao & Wu, Jianzhong & Yu, James, 2018. "Impacts of a medium voltage direct current link on the performance of electrical distribution networks," Applied Energy, Elsevier, vol. 230(C), pages 175-188.
    10. Pingfan Xu & Xiaoyi Liu & Samson Shenglong Yu & Lisheng Pang, 2022. "ZVS Realization of H-Bridge Low-Voltage High-Current Converter via Phase-Shift and Saturable Control," Energies, MDPI, vol. 15(24), pages 1-11, December.
    11. Rakshith, Bairi Levi & Asirvatham, Lazarus Godson & Angeline, Appadurai Anitha & Manova, Stephen & Bose, Jefferson Raja & Selvin Raj, J Perinba & Mahian, Omid & Wongwises, Somchai, 2022. "Cooling of high heat flux miniaturized electronic devices using thermal ground plane: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    12. Shair, Jan & Li, Haozhi & Hu, Jiabing & Xie, Xiaorong, 2021. "Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    13. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    14. Dequan Wang & Minfu Liao & Rufan Wang & Tenghui Li & Jun Qiu & Jinjin Li & Xiongying Duan & Jiyan Zou, 2020. "Research on Vacuum Arc Commutation Characteristics of a Natural-Commutate Hybrid DC Circuit Breaker," Energies, MDPI, vol. 13(18), pages 1-15, September.
    15. Jayarathna, Lasinidu & Kent, Geoff & O’Hara, Ian & Hobson, Philip, 2022. "Geographical information system based fuzzy multi criteria analysis for sustainability assessment of biomass energy plant siting: A case study in Queensland, Australia," Land Use Policy, Elsevier, vol. 114(C).
    16. Evgeniy Safonov & Vladimir Frolov & Ruslan Zhiligotov & Yuri Petrenya, 2023. "On the Problems of Current Limitations in Networks Based on Power Semiconductor Devices," Energies, MDPI, vol. 16(16), pages 1-14, August.
    17. Amit Kumar & Milad Moradpour & Michele Losito & Wulf-Toke Franke & Suganthi Ramasamy & Roberto Baccoli & Gianluca Gatto, 2022. "Wide Band Gap Devices and Their Application in Power Electronics," Energies, MDPI, vol. 15(23), pages 1-26, December.
    18. Reshma Gopi, R. & Sreejith, S., 2018. "Converter topologies in photovoltaic applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 1-14.
    19. Seyed Shahriyar Taghavi & Mahdi Rezvanyvardom & Amin Mirzaei & Saman A. Gorji, 2022. "High Step-Up Three-Level Soft Switching DC-DC Converter for Photovoltaic Generation Systems," Energies, MDPI, vol. 16(1), pages 1-22, December.
    20. Nursaid Polater & Pietro Tricoli, 2022. "Technical Review of Traction Drive Systems for Light Railways," Energies, MDPI, vol. 15(9), pages 1-26, April.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:213:y:2025:i:c:s1364032125000929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.