IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i6p1985-d767013.html
   My bibliography  Save this article

Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications

Author

Listed:
  • Yumeng Tian

    (School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia)

  • Harith R. Wickramasinghe

    (School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia)

  • Zixin Li

    (Key Laboratory of Power Electronics and Electric Drive, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Josep Pou

    (School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore)

  • Georgios Konstantinou

    (School of Electrical Engineering and Telecommunications, UNSW Sydney, Sydney, NSW 2052, Australia)

Abstract

The circuit topology of a submodule (SM) in an modular multilevel converter (MMC) defines many of the functionalities of the complete power electronics conversion system and the specific applications that a specific MMC configuration can support. Most prominent among all applications for the MMC is its use in high-voltage direct current (HVDC) transmission systems and multiterminal dc grids. The aim of the paper is to provide a comprehensive review and classification of the many different SM circuit topologies that have been proposed for the MMC up to date. Using an 800-MVA, point-to-point MMC-based HVDC transmission system as a benchmark, the presented analysis identifies the limitations and drawbacks of certain SM configurations that limit their broader adoption as MMC SMs. A hybrid model of an MMC arm and appropriate implementations of voltage-balancing algorithms are used for detailed loss comparison of all SMs and to quantify differences among multiple SMs. The review also provides a comprehensive benchmark among all SM configurations, broad recommendations for the benefits and limitations of different SM topologies which can be further expanded based on the requirements of a specific application, and identifies future opportunities.

Suggested Citation

  • Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1985-:d:767013
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/6/1985/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/6/1985/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    2. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    3. Yuqi Pang & Gang Ma & Xunyu Liu & Xiaotian Xu & Xinyuan Zhang, 2021. "A New MMC Sub-Module Topology with DC Fault Blocking Capability and Capacitor Voltage Self-Balancing Capability," Energies, MDPI, vol. 14(12), pages 1-17, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xingxing Chen & Shuguang Song, 2023. "Detection of Stealthy False Data Injection Attacks in Modular Multilevel Converters," Energies, MDPI, vol. 16(17), pages 1-18, September.
    2. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    3. Abdulkarim Athwer & Ahmed Darwish, 2023. "A Review on Modular Converter Topologies Based on WBG Semiconductor Devices in Wind Energy Conversion Systems," Energies, MDPI, vol. 16(14), pages 1-44, July.
    4. Hongjin Hu & Haoze Wang & Kun Liu & Jingbo Wei & Xiangjie Shen, 2022. "A Simplified Space Vector Pulse Width Modulation Algorithm of a High-Speed Permanent Magnet Synchronous Machine Drive for a Flywheel Energy Storage System," Energies, MDPI, vol. 15(11), pages 1-21, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Gabriel Oliveira Pinto & Rui Macedo & Vitor Monteiro & Luis Barros & Tiago Sousa & João L. Afonso, 2018. "Single-Phase Shunt Active Power Filter Based on a 5-Level Converter Topology," Energies, MDPI, vol. 11(4), pages 1-26, April.
    2. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    3. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    4. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    5. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    6. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    7. Cristina Terlizzi & Antonio Magnanimo & Francesco Santoro & Stefano Bifaretti, 2023. "Development of a Scalable MMC Pulsed Power Supply through HIL Methodology," Energies, MDPI, vol. 16(10), pages 1-19, May.
    8. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    9. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    10. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    11. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    12. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    13. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    14. Waqar Uddin & Tiago D. C. Busarello & Kamran Zeb & Muhammad Adil Khan & Anil Kumar Yedluri & Hee-Je Kim, 2021. "Control Strategy Based on Arm-Level Control for Output and Circulating Current of MMC in Stationary Reference Frame," Energies, MDPI, vol. 14(14), pages 1-20, July.
    15. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    16. Seyed Mehdi Hakimi & Amin Hajizadeh, 2018. "Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter," Energies, MDPI, vol. 11(10), pages 1-13, October.
    17. Joan Nicolas-Apruzzese & Emili Lupon & Sergio Busquets-Monge & Alfonso Conesa & Josep Bordonau & Gabriel García-Rojas, 2018. "FPGA-Based Controller for a Permanent-Magnet Synchronous Motor Drive Based on a Four-Level Active-Clamped DC-AC Converter," Energies, MDPI, vol. 11(10), pages 1-17, October.
    18. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    19. Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
    20. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:6:p:1985-:d:767013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.