IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6348-d902568.html
   My bibliography  Save this article

Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids

Author

Listed:
  • Davide del Giudice

    (DEIB, Politecnico di Milano, 20133 Milan, Italy)

  • Federico Bizzarri

    (DEIB, Politecnico di Milano, 20133 Milan, Italy
    Advanced Research Center on Electronic Systems for Information and Communication Technologies E. De Castro (ARCES), University of Bologna, 40126 Bologna, Italy)

  • Samuele Grillo

    (DEIB, Politecnico di Milano, 20133 Milan, Italy)

  • Daniele Linaro

    (DEIB, Politecnico di Milano, 20133 Milan, Italy)

  • Angelo Maurizio Brambilla

    (DEIB, Politecnico di Milano, 20133 Milan, Italy)

Abstract

Power systems are experiencing some profound changes, which are posing new challenges in many different ways. One of the most significant of such challenges is the increasing presence of inverter-based resources ( ibr s), both as loads and generators. This calls for new approaches and a wide reconsideration of the most commonly established practices in almost all the levels of power systems’ analysis, operation, and planning. This paper focuses specifically on the impacts on stability analyses of the numerical models of power system passive components (e.g., lines, transformers, along with their on-load tap changers). Traditionally, loads have been modelled as constant power loads, being this both a conservative option for what concerns stability results and a computationally convenient simplification. However, compared to their counterparts above, in some operating conditions ibr s can effectively be considered real constant power loads, whose behaviour is much more complex in terms of the equivalent impedance seen by the network. This has an impact on the way passive network components should be modelled to attain results and conclusions consistent with the real power system behaviour. In this paper, we investigate these issues on the ieee14 bus test network. To begin with, we assess the effects of constant-power and constant-impedance load models. Then, we replace a transmission line with a dc line connected to the network through two modular multilevel converters ( mmc s), which account for the presence of ibr s in modern grids. Lastly, we analyse how and to which extent inaccurate modelling of mmc s and other passive components can lead to wrong stability analyses and transient simulations.

Suggested Citation

  • Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6348-:d:902568
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6348/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6348/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rossano Musca & Francisco Gonzalez-Longatt & Cesar A. Gallego Sánchez, 2022. "Power System Oscillations with Different Prevalence of Grid-Following and Grid-Forming Converters," Energies, MDPI, vol. 15(12), pages 1-19, June.
    2. Salman Saeed Khan & Elisabetta Tedeschi, 2017. "Modeling of MMC for Fast and Accurate Simulation of Electromagnetic Transients: A Review," Energies, MDPI, vol. 10(8), pages 1-32, August.
    3. Songda Wang & Danyang Bao & Gustavo Gontijo & Sanjay Chaudhary & Remus Teodorescu, 2021. "Modeling and Mitigation Control of the Submodule-Capacitor Voltage Ripple of a Modular Multilevel Converter under Unbalanced Grid Conditions," Energies, MDPI, vol. 14(3), pages 1-17, January.
    4. EL-Shimy, M. & Mostafa, N. & Afandi, A.N. & Sharaf, A.M. & Attia, Mahmoud A., 2018. "Impact of load models on the static and dynamic performances of grid-connected wind power plants: A comparative analysis," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 149(C), pages 91-108.
    5. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    6. Hooman Ghaffarzadeh & Ali Mehrizi-Sani, 2020. "Review of Control Techniques for Wind Energy Systems," Energies, MDPI, vol. 13(24), pages 1-19, December.
    7. Chengbing He & Dakang Sun & Lei Song & Li Ma, 2019. "Analysis of Subsynchronous Resonance Characteristics and Influence Factors in a Series Compensated Transmission System," Energies, MDPI, vol. 12(17), pages 1-13, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Kumarasamy Palanimuthu & Ganesh Mayilsamy & Ameerkhan Abdul Basheer & Seong-Ryong Lee & Dongran Song & Young Hoon Joo, 2022. "A Review of Recent Aerodynamic Power Extraction Challenges in Coordinated Pitch, Yaw, and Torque Control of Large-Scale Wind Turbine Systems," Energies, MDPI, vol. 15(21), pages 1-27, November.
    3. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    4. Ricardo Vidal-Albalate & Jaume Forner, 2020. "Modeling and Enhanced Control of Hybrid Full Bridge–Half Bridge MMCs for HVDC Grid Studies," Energies, MDPI, vol. 13(1), pages 1-26, January.
    5. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    6. Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
    7. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    8. Larbi Chrifi-Alaoui & Saïd Drid & Mohammed Ouriagli & Driss Mehdi, 2023. "Overview of Photovoltaic and Wind Electrical Power Hybrid Systems," Energies, MDPI, vol. 16(12), pages 1-35, June.
    9. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    10. Fernando Martinez-Rodrigo & Dionisio Ramirez & Santiago de Pablo & Luis Carlos Herrero-de Lucas, 2021. "Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation," Energies, MDPI, vol. 14(9), pages 1-21, May.
    11. Zheng Xu & Nan Zhang & Zheren Zhang & Ying Huang, 2023. "The Definition of Power Grid Strength and Its Calculation Methods for Power Systems with High Proportion Nonsynchronous-Machine Sources," Energies, MDPI, vol. 16(4), pages 1-23, February.
    12. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    13. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Time-Domain Symmetrical Components Extraction Method," Energies, MDPI, vol. 15(19), pages 1-16, September.
    14. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "Wind Energy Market in Poland in the Background of the Baltic Sea Bordering Countries in the Era of the COVID-19 Pandemic," Energies, MDPI, vol. 15(7), pages 1-21, March.
    15. Victor Daniel Reyes Dreke & Mircea Lazar, 2022. "Long-Horizon Nonlinear Model Predictive Control of Modular Multilevel Converters," Energies, MDPI, vol. 15(4), pages 1-22, February.
    16. Mario Lopez & Hendrik Fehr & Marcelo A. Perez & Albrecht Gensior, 2021. "Pareto Frontier of the Arm Energy Ripple and the Conduction Losses of a Modular Multilevel Converter," Energies, MDPI, vol. 14(2), pages 1-20, January.
    17. Cristina Terlizzi & Antonio Magnanimo & Francesco Santoro & Stefano Bifaretti, 2023. "Development of a Scalable MMC Pulsed Power Supply through HIL Methodology," Energies, MDPI, vol. 16(10), pages 1-19, May.
    18. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    19. Mohammad Alathamneh & Haneen Ghanayem & Xingyu Yang & R. M. Nelms, 2022. "Three-Phase Grid-Connected Inverter Power Control under Unbalanced Grid Conditions Using a Proportional-Resonant Control Method," Energies, MDPI, vol. 15(19), pages 1-17, September.
    20. Jahangeer Badar Soomro & Dileep Kumar & Faheem Akhtar Chachar & Semih Isik & Mohammed Alharbi, 2023. "An Enhanced AC Fault Ride through Scheme for Offshore Wind-Based MMC-HVDC System," Sustainability, MDPI, vol. 15(11), pages 1-16, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6348-:d:902568. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.