IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i9p2681-d549946.html
   My bibliography  Save this article

Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation

Author

Listed:
  • Fernando Martinez-Rodrigo

    (Department of Electronics Technology, University of Valladolid, 47011 Valladolid, Spain)

  • Dionisio Ramirez

    (Centro de Electrónica Industrial (CEI), 28006 Madrid, Spain)

  • Santiago de Pablo

    (Department of Electronics Technology, University of Valladolid, 47011 Valladolid, Spain)

  • Luis Carlos Herrero-de Lucas

    (Department of Electronics Technology, University of Valladolid, 47011 Valladolid, Spain)

Abstract

This paper presents a new way of organizing a wind farm with a large number of small to medium-sized turbines. Each wind generator has been included in a switching module of a modular multilevel converter (MMC), which generates the output voltage by near level control (NLC). The proposed topology reduces the number of semiconductors required, switching losses, and voltage filtering requirements. This topology replaces the usual configuration where each wind turbine is connected to a three-phase two-level back-to-back converter plus a filter and then connected in parallel with the other wind generators. To test the topology and its control performance, a case has been developed and simulated for generator configurations producing the same power, for generation imbalances between phases and for imbalances between arms. The analysis of the data shows that the converter works correctly and that it can deliver power to the grid in a balanced way even if the generation has imbalances. The generation imbalances between phases are compensated through the average value of the circulating current, while the imbalances between arms are compensated through the 50 Hz circulating current.

Suggested Citation

  • Fernando Martinez-Rodrigo & Dionisio Ramirez & Santiago de Pablo & Luis Carlos Herrero-de Lucas, 2021. "Connection System for Small and Medium-Size Wind Generators through the Integration in an MMC and NLC Modulation," Energies, MDPI, vol. 14(9), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2681-:d:549946
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/9/2681/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/9/2681/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrzej Bogdan Kasprowicz & Oleksandr Husev & Ryszard Strzelecki, 2022. "Induction Generator with Direct Control and a Limited Number of Measurements on the Side of the Converter Connected to the Power Grid," Energies, MDPI, vol. 16(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yassir El Karkri & Alexis B. Rey-Boué & Hassan El Moussaoui & Johannes Stöckl & Thomas I. Strasser, 2019. "Improved Control of Grid-connected DFIG-based Wind Turbine using Proportional-Resonant Regulators during Unbalanced Grid," Energies, MDPI, vol. 12(21), pages 1-21, October.
    2. Md Ismail Hossain & Md Shafiullah & Fahad A. Al-Sulaiman & Mohammad A. Abido, 2022. "Comprehensive Analysis of PV and Wind Energy Integration into MMC-HVDC Transmission Network," Sustainability, MDPI, vol. 15(1), pages 1-36, December.
    3. Cristina Terlizzi & Antonio Magnanimo & Francesco Santoro & Stefano Bifaretti, 2023. "Development of a Scalable MMC Pulsed Power Supply through HIL Methodology," Energies, MDPI, vol. 16(10), pages 1-19, May.
    4. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    5. Stefano Farnesi & Mario Marchesoni & Massimiliano Passalacqua & Luis Vaccaro, 2019. "Solid-State Transformers in Locomotives Fed through AC Lines: A Review and Future Developments," Energies, MDPI, vol. 12(24), pages 1-29, December.
    6. Waqar Uddin & Tiago D. C. Busarello & Kamran Zeb & Muhammad Adil Khan & Anil Kumar Yedluri & Hee-Je Kim, 2021. "Control Strategy Based on Arm-Level Control for Output and Circulating Current of MMC in Stationary Reference Frame," Energies, MDPI, vol. 14(14), pages 1-20, July.
    7. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    8. Roland Ryndzionek & Łukasz Sienkiewicz, 2020. "Evolution of the HVDC Link Connecting Offshore Wind Farms to Onshore Power Systems," Energies, MDPI, vol. 13(8), pages 1-17, April.
    9. Seyed Mehdi Hakimi & Amin Hajizadeh, 2018. "Integration of Photovoltaic Power Units to Power Distribution System through Modular Multilevel Converter," Energies, MDPI, vol. 11(10), pages 1-13, October.
    10. Phu Cong Nguyen & Quoc Dung Phan & Dinh Tuyen Nguyen, 2022. "A New Decentralized Space Vector PWM Method for Multilevel Single-Phase Full Bridge Converters," Energies, MDPI, vol. 15(3), pages 1-25, January.
    11. Corentin Darbas & Jean-Christophe Olivier & Nicolas Ginot & Frédéric Poitiers & Christophe Batard, 2021. "Cascaded Smart Gate Drivers for Modular Multilevel Converters Control: A Decentralized Voltage Balancing Algorithm," Energies, MDPI, vol. 14(12), pages 1-27, June.
    12. Mohsin Ali Koondhar & Ghulam Sarwar Kaloi & Abdul Sattar Saand & Sadullah Chandio & Wonsuk Ko & Sisam Park & Hyeong-Jin Choi & Ragab Abdelaziz El-Sehiemy, 2023. "Critical Technical Issues with a Voltage-Source-Converter-Based High Voltage Direct Current Transmission System for the Onshore Integration of Offshore Wind Farms," Sustainability, MDPI, vol. 15(18), pages 1-21, September.
    13. Jae-Myeong Kim & Geum-Seop Song & Jae-Jung Jung, 2021. "Zero-Sequence Voltage Injection Method for DC Capacitor Voltage Balancing of Wye-Connected CHB Converter under Unbalanced Grid and Load Conditions," Energies, MDPI, vol. 14(4), pages 1-18, February.
    14. Victor Daniel Reyes Dreke & Mircea Lazar, 2022. "Long-Horizon Nonlinear Model Predictive Control of Modular Multilevel Converters," Energies, MDPI, vol. 15(4), pages 1-22, February.
    15. Mario Lopez & Hendrik Fehr & Marcelo A. Perez & Albrecht Gensior, 2021. "Pareto Frontier of the Arm Energy Ripple and the Conduction Losses of a Modular Multilevel Converter," Energies, MDPI, vol. 14(2), pages 1-20, January.
    16. Md Ismail Hossain & Md Shafiullah & Mohammad A. Abido, 2023. "Battery Power Control Strategy for Intermittent Renewable Energy Integrated Modular Multilevel Converter-Based High-Voltage Direct Current Network," Sustainability, MDPI, vol. 15(3), pages 1-31, February.
    17. Davide De Simone & Luigi Piegari, 2019. "Integration of Stationary Batteries for Fast Charge EV Charging Stations," Energies, MDPI, vol. 12(24), pages 1-11, December.
    18. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    19. Ismail Aouichak & Sébastien Jacques & Sébastien Bissey & Cédric Reymond & Téo Besson & Jean-Charles Le Bunetel, 2022. "A Bidirectional Grid-Connected DC–AC Converter for Autonomous and Intelligent Electricity Storage in the Residential Sector," Energies, MDPI, vol. 15(3), pages 1-19, February.
    20. José Gabriel Oliveira Pinto & Rui Macedo & Vitor Monteiro & Luis Barros & Tiago Sousa & João L. Afonso, 2018. "Single-Phase Shunt Active Power Filter Based on a 5-Level Converter Topology," Energies, MDPI, vol. 11(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:9:p:2681-:d:549946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.