IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4273-d836268.html
   My bibliography  Save this article

Power System Oscillations with Different Prevalence of Grid-Following and Grid-Forming Converters

Author

Listed:
  • Rossano Musca

    (Engineering Department, University of Palermo, 90128 Palermo, Italy)

  • Francisco Gonzalez-Longatt

    (Department of Electrical Engineering, Information Technology and Cybernetics, University of South-Eastern Norway, 3918 Porsgrunn, Norway)

  • Cesar A. Gallego Sánchez

    (Consulting Engineering Gallego, Bogotá 110111, Colombia)

Abstract

The oscillatory behaviour of the power system is an aspect that is significantly affected by the increasing integration of converter-based generation sources. Several works address the impact of non-synchronous generation on the operation of the system from different points of view, but only a few studies focus on power-frequency oscillations with a prevalence of generation sources interfaced through power electronics. A lack of research can be found in particular in the comparative analysis of the two main control strategies for power converters, namely grid-following and grid-forming. The article aims to contribute to this direction, starting from a theoretical analysis of the two control structures and then examining the case study of an existing transmission system. The research provides a specific insight into the fundamental aspects related to synchronisation mechanism and inertial capabilities of both grid-following with synthetic inertia and grid-forming controls. The difference in the relationship between synchronisation unit and inertial capability is recognised as the fundamental aspect determining the different impacts on the oscillatory characteristics of the system. The observation derived in the theoretical analysis is then applied to an actual power system with a high predominance of converter-based generation, considering the Colombian interconnected national system as a case study.

Suggested Citation

  • Rossano Musca & Francisco Gonzalez-Longatt & Cesar A. Gallego Sánchez, 2022. "Power System Oscillations with Different Prevalence of Grid-Following and Grid-Forming Converters," Energies, MDPI, vol. 15(12), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4273-:d:836268
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ali Bidadfar & Oscar Saborío-Romano & Vladislav Akhmatov & Nicolaos A. Cutululis & Poul E. Sørensen, 2019. "Impact of Primary Frequency Control of Offshore HVDC Grids on Interarea Modes of Power Systems," Energies, MDPI, vol. 12(20), pages 1-14, October.
    2. Mariano G. Ippolito & Rossano Musca & Gaetano Zizzo, 2021. "Analysis and Simulations of the Primary Frequency Control during a System Split in Continental Europe Power System," Energies, MDPI, vol. 14(5), pages 1-22, March.
    3. Mariano G. Ippolito & Rossano Musca & Eleonora Riva Sanseverino & Gaetano Zizzo, 2022. "Frequency Dynamics in Fully Non-Synchronous Electrical Grids: A Case Study of an Existing Island," Energies, MDPI, vol. 15(6), pages 1-24, March.
    4. Pupo-Roncallo, Oscar & Campillo, Javier & Ingham, Derek & Hughes, Kevin & Pourkashanian, Mohammed, 2019. "Large scale integration of renewable energy sources (RES) in the future Colombian energy system," Energy, Elsevier, vol. 186(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Davide del Giudice & Federico Bizzarri & Samuele Grillo & Daniele Linaro & Angelo Maurizio Brambilla, 2022. "Impact of Passive-Components’ Models on the Stability Assessment of Inverter-Dominated Power Grids," Energies, MDPI, vol. 15(17), pages 1-23, August.
    2. Albert Poulose & Soobae Kim, 2023. "Transient Stability Analysis and Enhancement Techniques of Renewable-Rich Power Grids," Energies, MDPI, vol. 16(5), pages 1-30, March.
    3. Zheng Xu & Nan Zhang & Zheren Zhang & Ying Huang, 2023. "The Definition of Power Grid Strength and Its Calculation Methods for Power Systems with High Proportion Nonsynchronous-Machine Sources," Energies, MDPI, vol. 16(4), pages 1-23, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Luo, Shihua & Hu, Weihao & Liu, Wen & Liu, Zhou & Huang, Qi & Chen, Zhe, 2022. "Flexibility enhancement measures under the COVID-19 pandemic – A preliminary comparative analysis in Denmark, the Netherlands, and Sichuan of China," Energy, Elsevier, vol. 239(PC).
    3. Machado, Renato Haddad Simões & Rego, Erik Eduardo & Udaeta, Miguel Edgar Morales & Nascimento, Viviane Tavares, 2022. "Estimating the adequacy revenue considering long-term reliability in a renewable power system," Energy, Elsevier, vol. 243(C).
    4. Icaza-Alvarez, Daniel & Jurado, Francisco & Tostado-Véliz, Marcos & Arevalo, Paúl, 2022. "Decarbonization of the Galapagos Islands. Proposal to transform the energy system into 100% renewable by 2050," Renewable Energy, Elsevier, vol. 189(C), pages 199-220.
    5. Stefania Betancur & Naghelli Ortega-Avila & Erick César López-Vidaña, 2023. "Strengths, Weaknesses, Opportunities, and Threats Analysis for the Strengthening of Solar Thermal Energy in Colombia," Resources, MDPI, vol. 13(1), pages 1-21, December.
    6. Filippo Bovera & Giuliano Rancilio & Davide Falabretti & Marco Merlo, 2021. "Data-Driven Evaluation of Secondary- and Tertiary-Reserve Needs with High Renewables Penetration: The Italian Case," Energies, MDPI, vol. 14(8), pages 1-24, April.
    7. Tina, Giuseppe Marco & Aneli, Stefano & Gagliano, Antonio, 2022. "Technical and economic analysis of the provision of ancillary services through the flexibility of HVAC system in shopping centers," Energy, Elsevier, vol. 258(C).
    8. Arévalo, Paúl & Cano, Antonio & Jurado, Francisco, 2022. "Mitigation of carbon footprint with 100% renewable energy system by 2050: The case of Galapagos islands," Energy, Elsevier, vol. 245(C).
    9. Damian Hasterok & Rui Castro & Marcin Landrat & Krzysztof Pikoń & Markus Doepfert & Hugo Morais, 2021. "Polish Energy Transition 2040: Energy Mix Optimization Using Grey Wolf Optimizer," Energies, MDPI, vol. 14(2), pages 1-27, January.
    10. Farhad Zishan & Saeedeh Mansouri & Farzad Abdollahpour & Luis Fernando Grisales-Noreña & Oscar Danilo Montoya, 2023. "Allocation of Renewable Energy Resources in Distribution Systems While considering the Uncertainty of Wind and Solar Resources via the Multi-Objective Salp Swarm Algorithm," Energies, MDPI, vol. 16(1), pages 1-17, January.
    11. Tanoto, Yusak & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2021. "Reliability-cost trade-offs for electricity industry planning with high variable renewable energy penetrations in emerging economies: A case study of Indonesia’s Java-Bali grid," Energy, Elsevier, vol. 227(C).
    12. Ahmed Younis & René Benders & Jezabel Ramírez & Merlijn de Wolf & André Faaij, 2022. "Scrutinizing the Intermittency of Renewable Energy in a Long-Term Planning Model via Combining Direct Integration and Soft-Linking Methods for Colombia’s Power System," Energies, MDPI, vol. 15(20), pages 1-24, October.
    13. Carlos Arturo Cárdenas Guerra & Adalberto José Ospino Castro & Rafael Peña Gallardo, 2023. "Analysis of the Impact of Integrating Variable Renewable Energy into the Power System in the Colombian Caribbean Region," Energies, MDPI, vol. 16(21), pages 1-16, October.
    14. Meha, Drilon & Pfeifer, Antun & Sahiti, Naser & Rolph Schneider, Daniel & Duić, Neven, 2021. "Sustainable transition pathways with high penetration of variable renewable energy in the coal-based energy systems," Applied Energy, Elsevier, vol. 304(C).
    15. Zhang, Kezhen & Liu, Ming & Zhao, Yongliang & Wang, Chaoyang & Yan, Junjie, 2020. "Entropy generation versus transition time of heat exchanger during transient processes," Energy, Elsevier, vol. 200(C).
    16. Okonkwo, Eric C. & Wole-Osho, Ifeoluwa & Bamisile, Olusola & Abid, Muhammad & Al-Ansari, Tareq, 2021. "Grid integration of renewable energy in Qatar: Potentials and limitations," Energy, Elsevier, vol. 235(C).
    17. Zhang, Kezhen & Zhao, Yongliang & Liu, Ming & Gao, Lin & Fu, Yue & Yan, Junjie, 2021. "Flexibility enhancement versus thermal efficiency of coal-fired power units during the condensate throttling processes," Energy, Elsevier, vol. 218(C).
    18. Nascimento, Viviane Tavares & Gimenes, Patricia Albuquerque & Morales Udaeta, Miguel Edgar & Veiga Gimenes, André L. & Riboldi, Victor Baiochi & Ji, Tuo, 2023. "Transition mapping for modern energy service provision under uncertainty: A case study from Brazil," Utilities Policy, Elsevier, vol. 84(C).
    19. Josip Tosic & Srdjan Skok & Ljupko Teklic & Mislav Balkovic, 2022. "Resilience Neural-Network-Based Methodology Applied on Optimized Transmission Systems Restoration," Energies, MDPI, vol. 15(13), pages 1-16, June.
    20. Göke, Leonard & Weibezahn, Jens & Kendziorski, Mario, 2023. "How flexible electrification can integrate fluctuating renewables," Energy, Elsevier, vol. 278(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4273-:d:836268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.