IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i10p2598-d172855.html
   My bibliography  Save this article

Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression

Author

Listed:
  • Qiwu Luo

    (School of Electrical Engineering and Automation, Hefei University of Technology, Hefei 230009, China)

  • Jian Zheng

    (College of Electrical and Information Engineering, Hunan University, Changsha 410082, China)

  • Yichuang Sun

    (School of Engineering and Technology, University of Hertfordshire, Hatfield, Herts AL10 9AB, UK)

  • Lijun Yang

    (College of Electric Engineering, Yanshan University, Qinhuangdao 066004, China)

Abstract

Dual Y shift 30° six-phase motors are expected to be extensively applied in high-power yet energy-effective fields, and a harmonic-suppressing control strategy plays a vital role in extending their prominent features of low losses and ultra-quiet operation. Aiming at the suppression of harmonic voltages, this paper proposes a six-phase space vector pulse width modulation method based on an optimization model, namely OM-SVPWM. First, four adjacent large vectors are employed in each of 12 sectors on a fundamental sub-plane. Second, the optimization model is constructed to intelligently determine activation durations of the four vectors, where its objective function aims to minimize the synthesis result on a harmonic sub-plane, and its constraint condition is that the synthesis result on the fundamental sub-plane satisfies a reference vector. Finally, to meet the real-time requirement, optimum solutions are obtained by using general central path following algorithm (GCPFA). Simulation and experiment results prove that, the OM-SVPWM performs around 37% better than a state-of-the-art competitive SVPWM in terms of harmonics suppression, which promise the proposed OM-SVPWM conforms to the energy-effective direction in actual engineering applications.

Suggested Citation

  • Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2598-:d:172855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/10/2598/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/10/2598/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ping Zheng & Fan Wu & Yu Lei & Yi Sui & Bin Yu, 2013. "Investigation of a Novel 24-Slot/14-Pole Six-Phase Fault-Tolerant Modular Permanent-Magnet In-Wheel Motor for Electric Vehicles," Energies, MDPI, vol. 6(10), pages 1-23, September.
    2. Jian Zheng & Shoudao Huang & Fei Rong & Mingcheng Lye, 2018. "Six-Phase Space Vector PWM under Stator One-Phase Open-Circuit Fault Condition," Energies, MDPI, vol. 11(7), pages 1-21, July.
    3. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    4. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
    2. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    3. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    4. Dong-Kyun Son & Soon-Ho Kwon & Dong-Ok Kim & Hee-Sue Song & Geun-Ho Lee, 2021. "Control Comparison for the Coordinate Transformation of an Asymmetric Dual Three Phase Synchronous Motor in Healthy and Single-Phase Open Fault States," Energies, MDPI, vol. 14(6), pages 1-14, March.
    5. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    6. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.
    7. Jing Zhao & Xu Gao & Bin Li & Xiangdong Liu & Xing Guan, 2015. "Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 8(11), pages 1-29, November.
    8. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    9. Hussein Zahr & Jinlin Gong & Eric Semail & Franck Scuiller, 2016. "Comparison of Optimized Control Strategies of a High-Speed Traction Machine with Five Phases and Bi-Harmonic Electromotive Force," Energies, MDPI, vol. 9(12), pages 1-19, November.
    10. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    11. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    12. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    13. Jinhong Li & Dawei Meng, 2020. "Dynamic and Adjustable New Pattern Four-Vector SVPWM Algorithm for Application in a Five-Phase Induction Motor," Energies, MDPI, vol. 13(7), pages 1-21, April.
    14. Robles, Endika & Fernandez, Markel & Andreu, Jon & Ibarra, Edorta & Zaragoza, Jordi & Ugalde, Unai, 2022. "Common-mode voltage mitigation in multiphase electric motor drive systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    16. Hui Zhang & Oskar Wallmark, 2017. "Limitations and Constraints of Eddy-Current Loss Models for Interior Permanent-Magnet Motors with Fractional-Slot Concentrated Windings," Energies, MDPI, vol. 10(3), pages 1-19, March.
    17. Joan Nicolas-Apruzzese & Emili Lupon & Sergio Busquets-Monge & Alfonso Conesa & Josep Bordonau & Gabriel García-Rojas, 2018. "FPGA-Based Controller for a Permanent-Magnet Synchronous Motor Drive Based on a Four-Level Active-Clamped DC-AC Converter," Energies, MDPI, vol. 11(10), pages 1-17, October.
    18. Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
    19. López, I. & Ibarra, E. & Matallana, A. & Andreu, J. & Kortabarria, I., 2019. "Next generation electric drives for HEV/EV propulsion systems: Technology, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    20. Weiwei Gu & Xiaoyong Zhu & Li Quan & Yi Du, 2015. "Design and Optimization of Permanent Magnet Brushless Machines for Electric Vehicle Applications," Energies, MDPI, vol. 8(12), pages 1-13, December.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2598-:d:172855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.