IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i17p3395-d263621.html
   My bibliography  Save this article

Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage

Author

Listed:
  • Umashankar Subramaniam

    (Renewable Energy Lab, Department of Communications and Networks, College of Engineering, Prince Sultan University (PSU), Riyadh 66833, Saudi Arabia)

  • Sagar Mahajan Bhaskar

    (Renewable Energy Lab, Department of Communications and Networks, College of Engineering, Prince Sultan University (PSU), Riyadh 66833, Saudi Arabia)

  • Dhafer J.Almakhles

    (Renewable Energy Lab, Department of Communications and Networks, College of Engineering, Prince Sultan University (PSU), Riyadh 66833, Saudi Arabia)

  • Sanjeevikumar Padmanaban

    (Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark)

  • Zbigniew Leonowicz

    (Faculty of Electrical Engineering, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50370 Wroclaw, Poland)

Abstract

Power inverters produce common mode voltage (CMV) and common mode current (CMC) which cause high-frequency electromagnetic interference (EMI) noise, leakage currents in electrical drives application and grid-connected systems, which consequently drops the efficiency of the system considerably. This CMV can be mitigated by designing suitable EMI filters and/or investigating the effects of different modulation strategies. In this paper, the effect of various modulation techniques over CMV and CMC are investigated for two-level and three-level inverters. It is observed that the modified third harmonic injection method reduced the CMV and CMC in the system by 60%. This modified pulse width modulation (PWM) technique is employed along with EMI chokes which results in reduced distortion of the system.

Suggested Citation

  • Umashankar Subramaniam & Sagar Mahajan Bhaskar & Dhafer J.Almakhles & Sanjeevikumar Padmanaban & Zbigniew Leonowicz, 2019. "Investigations on EMI Mitigation Techniques: Intent to Reduce Grid-Tied PV Inverter Common Mode Current and Voltage," Energies, MDPI, vol. 12(17), pages 1-18, September.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3395-:d:263621
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/17/3395/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/17/3395/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
    2. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    3. Majid Mehrasa & Edris Pouresmaeil & Sasan Zabihi & Juan C. Trujillo Caballero & João P. S. Catalão, 2016. "A Novel Modulation Function-Based Control of Modular Multilevel Converters for High Voltage Direct Current Transmission Systems," Energies, MDPI, vol. 9(11), pages 1-14, October.
    4. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chaiyan Jettanasen & Atthapol Ngaopitakkul, 2019. "The Conducted Emission Attenuation of Micro-Inverters for Nanogrid Systems," Sustainability, MDPI, vol. 12(1), pages 1-31, December.
    2. Vladimir Kindl & Lukáš Sobotka & Michal Frivaldsky & Martin Skalicky, 2022. "Analytical Method for Designing Three-Phase Air-Gapped Compensation Choke," Energies, MDPI, vol. 15(19), pages 1-17, October.
    3. Narayanan Pandurangan Gopinath & Krishnasamy Vijayakumar & Jagabar Sathik Mohd Ali & Kumutha Raghupathi & Sivakumar Selvam, 2023. "A Triple Boost Seven-Level Common Ground Transformerless Inverter Topology for Grid-Connected Photovoltaic Applications," Energies, MDPI, vol. 16(8), pages 1-20, April.
    4. Truong-Duy Duong & Minh-Khai Nguyen & Tan-Tai Tran & Dai-Van Vo & Young-Cheol Lim & Joon-Ho Choi, 2022. "Topology Review of Three-Phase Two-Level Transformerless Photovoltaic Inverters for Common-Mode Voltage Reduction," Energies, MDPI, vol. 15(9), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    2. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    3. Xiongmin Tang & Junhui Zhang & Zheng Liu & Miao Zhang, 2017. "A Switching Frequency Optimized Space Vector Pulse Width Modulation (SVPWM) Scheme for Cascaded Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-18, May.
    4. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    5. Miguel Moranchel & Emilio Bueno & Inés Sanz & Francisco J. Rodríguez, 2017. "New Approaches to Circulating Current Controllers for Modular Multilevel Converters," Energies, MDPI, vol. 10(1), pages 1-20, January.
    6. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    7. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    8. Yiqi Liu & Danhua Li & Yu Jin & Qingbo Wang & Wenlong Song, 2018. "Research on Unbalance Fault-Tolerant Control Strategy of Modular Multilevel Photovoltaic Grid-Connected Inverter," Energies, MDPI, vol. 11(6), pages 1-18, May.
    9. Yantao Liao & Jun You & Jun Yang & Zuo Wang & Long Jin, 2018. "Disturbance-Observer-Based Model Predictive Control for Battery Energy Storage System Modular Multilevel Converters," Energies, MDPI, vol. 11(9), pages 1-19, August.
    10. Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
    11. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    12. Jinhong Li & Dawei Meng, 2020. "Dynamic and Adjustable New Pattern Four-Vector SVPWM Algorithm for Application in a Five-Phase Induction Motor," Energies, MDPI, vol. 13(7), pages 1-21, April.
    13. Yumeng Tian & Harith R. Wickramasinghe & Zixin Li & Josep Pou & Georgios Konstantinou, 2022. "Review, Classification and Loss Comparison of Modular Multilevel Converter Submodules for HVDC Applications," Energies, MDPI, vol. 15(6), pages 1-32, March.
    14. Joan Nicolas-Apruzzese & Emili Lupon & Sergio Busquets-Monge & Alfonso Conesa & Josep Bordonau & Gabriel García-Rojas, 2018. "FPGA-Based Controller for a Permanent-Magnet Synchronous Motor Drive Based on a Four-Level Active-Clamped DC-AC Converter," Energies, MDPI, vol. 11(10), pages 1-17, October.
    15. Yun Yang & Chengxiong Mao & Dan Wang & Jie Tian & Ming Yang, 2017. "Modeling and Analysis of the Common Mode Voltage in a Cascaded H-Bridge Electronic Power Transformer," Energies, MDPI, vol. 10(9), pages 1-16, September.
    16. Lingtong Jiang & Qing Chen & Wudi Huang & Lei Wang & Yu Zeng & Pu Zhao, 2018. "Pilot Protection Based on Amplitude of Directional Travelling Wave for Voltage Source Converter-High Voltage Direct Current (VSC-HVDC) Transmission Lines," Energies, MDPI, vol. 11(8), pages 1-15, August.
    17. Zaid A. Aljawary & Santiago de Pablo & Luis Carlos Herrero-de Lucas & Fernando Martinez-Rodrigo, 2020. "Local Carrier PWM for Modular Multilevel Converters with Distributed PV Cells and Circulating Current Reduction," Energies, MDPI, vol. 13(21), pages 1-21, October.
    18. Guido Ala & Massimo Caruso & Rosario Miceli & Filippo Pellitteri & Giuseppe Schettino & Marco Trapanese & Fabio Viola, 2019. "Experimental Investigation on the Performances of a Multilevel Inverter Using a Field Programmable Gate Array-Based Control System," Energies, MDPI, vol. 12(6), pages 1-17, March.
    19. Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
    20. José Gabriel Oliveira Pinto & Rui Macedo & Vitor Monteiro & Luis Barros & Tiago Sousa & João L. Afonso, 2018. "Single-Phase Shunt Active Power Filter Based on a 5-Level Converter Topology," Energies, MDPI, vol. 11(4), pages 1-26, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:17:p:3395-:d:263621. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.