IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i16p6008-d892293.html
   My bibliography  Save this article

Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique

Author

Listed:
  • Murthy Priya

    (Vellore Institute of Technology, School of Electrical Engineering, Vellore 632014, Tamil Nadu, India)

  • Pathipooranam Ponnambalam

    (Vellore Institute of Technology, School of Electrical Engineering, Vellore 632014, Tamil Nadu, India)

Abstract

The contribution of the modular multilevel converter (MMC) in integrating non-conventional energy sources into the grid is significant; the integration of fuel cells with distributed energy sources is especially prominent as they provide a constant voltage and current for constant load applications. Still, there is a high demand for a high-quality power conditioning unit since there is an occurrence of frequent power spikes. Further, the circulating current (CC) in phase legs is an inherent phenomenon of MMC that must be mitigated. Hence, this article proposed an MMC incorporating a fuzzy logic controller (FLC)-based technique to control the circulating currents. The fuzzy controller effectively reduced the harmonics of the CC in the dc-link system. In addition, phase-shifted carrier (PSC) modulation was employed for the MMC to improve the capacitor voltage balancing to maintain the constant input voltage. Moreover, a mathematical analysis of PSC modulation for MMC was performed to identify the PWM harmonic characteristics of the output voltage and the CC. The performance analysis of the proposed system was tested using the hardware in loop (HIL) simulation with the help of the real-time simulator OP-5700 to verify the feasibility.

Suggested Citation

  • Murthy Priya & Pathipooranam Ponnambalam, 2022. "Circulating Current Control of Phase-Shifted Carrier-Based Modular Multilevel Converter Fed by Fuel Cell Employing Fuzzy Logic Control Technique," Energies, MDPI, vol. 15(16), pages 1-26, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6008-:d:892293
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/16/6008/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/16/6008/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anirudh Budnar Acharya & Mattia Ricco & Dezso Sera & Remus Teodorescu & Lars Einar Norum, 2019. "Arm Power Control of the Modular Multilevel Converter in Photovoltaic Applications," Energies, MDPI, vol. 12(9), pages 1-23, April.
    2. Ming Liu & Zetao Li & Xiaoliu Yang, 2020. "A Universal Mathematical Model of Modular Multilevel Converter with Half-Bridge," Energies, MDPI, vol. 13(17), pages 1-18, August.
    3. Anirudh Budnar Acharya & Dezso Sera & Remus Teodorescu & Lars Einar Norum, 2020. "Modular Multilevel Converter for Photovoltaic Application with High Energy Yield under Uneven Irradiance," Energies, MDPI, vol. 13(10), pages 1-16, May.
    4. Ioan Aschilean & Mihai Varlam & Mihai Culcer & Mariana Iliescu & Mircea Raceanu & Adrian Enache & Maria Simona Raboaca & Gabriel Rasoi & Constantin Filote, 2018. "Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle," Energies, MDPI, vol. 11(5), pages 1-12, May.
    5. Rui Li & John E. Fletcher, 2016. "AC Voltage Control of DC/DC Converters Based on Modular Multilevel Converters in Multi-Terminal High-Voltage Direct Current Transmission Systems," Energies, MDPI, vol. 9(12), pages 1-10, December.
    6. Shuren Wang & Fahad Saeed Alsokhiry & Grain Philip Adam, 2020. "Impact of Submodule Faults on the Performance of Modular Multilevel Converters," Energies, MDPI, vol. 13(16), pages 1-18, August.
    7. Koushik Ahmed & Omar Farrok & Md Mominur Rahman & Md Sawkat Ali & Md Mejbaul Haque & Abul Kalam Azad, 2020. "Proton Exchange Membrane Hydrogen Fuel Cell as the Grid Connected Power Generator," Energies, MDPI, vol. 13(24), pages 1-20, December.
    8. Miguel Moranchel & Francisco Huerta & Inés Sanz & Emilio Bueno & Francisco J. Rodríguez, 2016. "A Comparison of Modulation Techniques for Modular Multilevel Converters," Energies, MDPI, vol. 9(12), pages 1-20, December.
    9. Elie Talon Louokdom & Serge Gavin & Daniel Siemaszko & Frédéric Biya-Motto & Bernard Essimbi Zobo & Mario Marchesoni & Mauro Carpita, 2018. "Small-Scale Modular Multilevel Converter for Multi-Terminal DC Networks Applications: System Control Validation," Energies, MDPI, vol. 11(7), pages 1-19, June.
    10. Sen Zhang & Jianfeng Zhao & Zhihong Zhao & Kangli Liu & Pengyu Wang & Bin Yang, 2019. "Decoupled Current Controller Based on Reduced Order Generalized Integrator for Three-Phase Grid-Connected VSCs in Distributed System," Energies, MDPI, vol. 12(12), pages 1-15, June.
    11. Miguel Moranchel & Emilio Bueno & Inés Sanz & Francisco J. Rodríguez, 2017. "New Approaches to Circulating Current Controllers for Modular Multilevel Converters," Energies, MDPI, vol. 10(1), pages 1-20, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yetong Han & Rui Wang & Yi Zhang & Dazhong Ma & Shaoxv Jiang & Liangwu Wen, 2022. "An Adaptive Switching Control Strategy under Heavy–Light Load for the Bidirectional LLC Considering Parasitic Capacitance," Sustainability, MDPI, vol. 14(19), pages 1-16, September.
    2. Farhan Mumtaz & Nor Zaihar Yahaya & Sheikh Tanzim Meraj & Narinderjit Singh Sawaran Singh & Md. Siddikur Rahman & Molla Shahadat Hossain Lipu, 2023. "A High Voltage Gain Interleaved DC-DC Converter Integrated Fuel Cell for Power Quality Enhancement of Microgrid," Sustainability, MDPI, vol. 15(9), pages 1-21, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mario Lopez & Hendrik Fehr & Marcelo A. Perez & Albrecht Gensior, 2021. "Pareto Frontier of the Arm Energy Ripple and the Conduction Losses of a Modular Multilevel Converter," Energies, MDPI, vol. 14(2), pages 1-20, January.
    2. Fernando Martinez-Rodrigo & Dionisio Ramirez & Alexis B. Rey-Boue & Santiago De Pablo & Luis Carlos Herrero-de Lucas, 2017. "Modular Multilevel Converters: Control and Applications," Energies, MDPI, vol. 10(11), pages 1-26, October.
    3. Zaid A. Aljawary & Santiago de Pablo & Luis Carlos Herrero-de Lucas & Fernando Martinez-Rodrigo, 2020. "Local Carrier PWM for Modular Multilevel Converters with Distributed PV Cells and Circulating Current Reduction," Energies, MDPI, vol. 13(21), pages 1-21, October.
    4. Qinyue Zhu & Wei Dai & Lei Guan & Xitang Tan & Zhaoyang Li & Dabo Xie, 2019. "A Fault-Tolerant Control Strategy of Modular Multilevel Converter with Sub-Module Faults Based on Neutral Point Compound Shift," Energies, MDPI, vol. 12(5), pages 1-22, March.
    5. Guilherme V. Hollweg & Shahid A. Khan & Shivam Chaturvedi & Yaoyu Fan & Mengqi Wang & Wencong Su, 2023. "Grid-Connected Converters: A Brief Survey of Topologies, Output Filters, Current Control, and Weak Grids Operation," Energies, MDPI, vol. 16(9), pages 1-31, April.
    6. Abdul Ghani Olabi & Enas Taha Sayed, 2023. "Developments in Hydrogen Fuel Cells," Energies, MDPI, vol. 16(5), pages 1-5, March.
    7. Joaquim Monteiro & Sónia Pinto & Aranzazu Delgado Martin & José Fernando Silva, 2017. "A New Real Time Lyapunov Based Controller for Power Quality Improvement in Unified Power Flow Controllers Using Direct Matrix Converters," Energies, MDPI, vol. 10(6), pages 1-13, June.
    8. Hegazy Rezk & Tabbi Wilberforce & A. G. Olabi & Rania M. Ghoniem & Enas Taha Sayed & Mohammad Ali Abdelkareem, 2023. "Optimal Parameter Identification of a PEM Fuel Cell Using Recent Optimization Algorithms," Energies, MDPI, vol. 16(14), pages 1-20, July.
    9. Carlo Cunanan & Manh-Kien Tran & Youngwoo Lee & Shinghei Kwok & Vincent Leung & Michael Fowler, 2021. "A Review of Heavy-Duty Vehicle Powertrain Technologies: Diesel Engine Vehicles, Battery Electric Vehicles, and Hydrogen Fuel Cell Electric Vehicles," Clean Technol., MDPI, vol. 3(2), pages 1-16, June.
    10. Xiongmin Tang & Chengjing Lai & Zheng Liu & Miao Zhang, 2017. "A SVPWM to Eliminate Common-Mode Voltage for Multilevel Inverters," Energies, MDPI, vol. 10(5), pages 1-10, May.
    11. Maria Simona Răboacă & Gheorghe Badea & Adrian Enache & Constantin Filote & Gabriel Răsoi & Mihai Rata & Alexandru Lavric & Raluca-Andreea Felseghi, 2019. "Concentrating Solar Power Technologies," Energies, MDPI, vol. 12(6), pages 1-17, March.
    12. Talal Yusaf & K. Kadirgama & Steve Hall & Louis Fernandes, 2022. "The Future of Sustainable Aviation Fuels, Challenges and Solutions," Energies, MDPI, vol. 15(21), pages 1-4, November.
    13. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    14. Xu Tian & Yue Ma & Jintao Yu & Cong Wang & Hong Cheng, 2019. "A Modified One-Cycle-Control Method for Modular Multilevel Converters," Energies, MDPI, vol. 12(1), pages 1-17, January.
    15. Mojgan Fayyazi & Paramjotsingh Sardar & Sumit Infent Thomas & Roonak Daghigh & Ali Jamali & Thomas Esch & Hans Kemper & Reza Langari & Hamid Khayyam, 2023. "Artificial Intelligence/Machine Learning in Energy Management Systems, Control, and Optimization of Hydrogen Fuel Cell Vehicles," Sustainability, MDPI, vol. 15(6), pages 1-38, March.
    16. Qiwu Luo & Jian Zheng & Yichuang Sun & Lijun Yang, 2018. "Optimal Modeled Six-Phase Space Vector Pulse Width Modulation Method for Stator Voltage Harmonic Suppression," Energies, MDPI, vol. 11(10), pages 1-16, September.
    17. Massimiliano Luna, 2022. "High-Efficiency and High-Performance Power Electronics for Power Grids and Electrical Drives," Energies, MDPI, vol. 15(16), pages 1-6, August.
    18. Yiqi Liu & Danhua Li & Yu Jin & Qingbo Wang & Wenlong Song, 2018. "Research on Unbalance Fault-Tolerant Control Strategy of Modular Multilevel Photovoltaic Grid-Connected Inverter," Energies, MDPI, vol. 11(6), pages 1-18, May.
    19. Xu Tian & Xingcheng Li & Zibo Zhou, 2020. "Novel Uninterruptible Phase-Separation Passing and Power Quality Compensation Scheme Based on Modular Multilevel Converter for Double-Track Electrified Railway," Energies, MDPI, vol. 13(3), pages 1-17, February.
    20. Nguyen Van Duc Long & Le Cao Nhien & Moonyong Lee, 2023. "Advanced Technologies in Hydrogen Revolution," Energies, MDPI, vol. 16(5), pages 1-4, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:16:p:6008-:d:892293. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.