IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i12p4803-d1174587.html
   My bibliography  Save this article

State-Space Load Flow Calculation of an Energy System with Sector-Coupling Technologies

Author

Listed:
  • Sebastian Bottler

    (Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany)

  • Christian Weindl

    (Institute of High Voltage Technology, Energy System & Asset Diagnostics (IHEA), Coburg University of Applied Sciences and Arts, 96450 Coburg, Germany)

Abstract

This paper addresses the sector-coupling principle, highlights each associated sector’s technologies and showcases their future development, according to the German grid development plan. Furthermore, the research project ESM-Regio, and its goals in terms of simulatively analyzing the sector-coupling approach for a specific model region and future scenarios, is introduced. In this context, the key methods for modeling the electricity sector’s loading behavior are showcased. Most importantly, the state-space load flow calculation, load modeling (including the integration of the power demands of the sector-coupling technologies) and an assessment of grid operating equipment, based on thermal aging models, are described.

Suggested Citation

  • Sebastian Bottler & Christian Weindl, 2023. "State-Space Load Flow Calculation of an Energy System with Sector-Coupling Technologies," Energies, MDPI, vol. 16(12), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4803-:d:1174587
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/12/4803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/12/4803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Joseph P. Varghese & Kumaravel Sundaramoorthy & Ashok Sankaran, 2023. "Development and Validation of a Load Flow Based Scheme for Optimum Placing and Quantifying of Distributed Generation for Alleviation of Congestion in Interconnected Power Systems," Energies, MDPI, vol. 16(6), pages 1-24, March.
    2. Benedetto-Giuseppe Risi & Francesco Riganti-Fulginei & Antonino Laudani, 2022. "Modern Techniques for the Optimal Power Flow Problem: State of the Art," Energies, MDPI, vol. 15(17), pages 1-20, September.
    3. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    4. Cristina Coutinho de Oliveira & Alfredo Bonini Neto & Dilson Amancio Alves & Carlos Roberto Minussi & Carlos Alberto Castro, 2023. "Alternative Current Injection Newton and Fast Decoupled Power Flow," Energies, MDPI, vol. 16(6), pages 1-17, March.
    5. Mwasilu, Francis & Justo, Jackson John & Kim, Eun-Kyung & Do, Ton Duc & Jung, Jin-Woo, 2014. "Electric vehicles and smart grid interaction: A review on vehicle to grid and renewable energy sources integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 501-516.
    6. Katrin Schmietendorf & Joachim Peinke & Oliver Kamps, 2017. "The impact of turbulent renewable energy production on power grid stability and quality," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 90(11), pages 1-6, November.
    7. Filip Mišurović & Saša Mujović, 2022. "Numerical Probabilistic Load Flow Analysis in Modern Power Systems with Intermittent Energy Sources," Energies, MDPI, vol. 15(6), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehrdad Tarafdar-Hagh & Kamran Taghizad-Tavana & Mohsen Ghanbari-Ghalehjoughi & Sayyad Nojavan & Parisa Jafari & Amin Mohammadpour Shotorbani, 2023. "Optimizing Electric Vehicle Operations for a Smart Environment: A Comprehensive Review," Energies, MDPI, vol. 16(11), pages 1-21, May.
    2. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    3. Yu, Hang & Niu, Songyan & Shang, Yitong & Shao, Ziyun & Jia, Youwei & Jian, Linni, 2022. "Electric vehicles integration and vehicle-to-grid operation in active distribution grids: A comprehensive review on power architectures, grid connection standards and typical applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Chaouachi, Aymen & Bompard, Ettore & Fulli, Gianluca & Masera, Marcelo & De Gennaro, Michele & Paffumi, Elena, 2016. "Assessment framework for EV and PV synergies in emerging distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 719-728.
    5. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    6. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    7. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    8. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    9. Shi, Ruifeng & Li, Shaopeng & Zhang, Penghui & Lee, Kwang Y., 2020. "Integration of renewable energy sources and electric vehicles in V2G network with adjustable robust optimization," Renewable Energy, Elsevier, vol. 153(C), pages 1067-1080.
    10. Shi You & Junjie Hu & Charalampos Ziras, 2016. "An Overview of Modeling Approaches Applied to Aggregation-Based Fleet Management and Integration of Plug-in Electric Vehicles †," Energies, MDPI, vol. 9(11), pages 1-18, November.
    11. Ellen De Schepper & Steven Van Passel & Sebastien Lizin & Thomas Vincent & Benjamin Martin & Xavier Gandibleux, 2016. "Economic and environmental multi-objective optimisation to evaluate the impact of Belgian policy on solar power and electric vehicles," Journal of Environmental Economics and Policy, Taylor & Francis Journals, vol. 5(1), pages 1-27, March.
    12. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    13. Soares, Laura & Wang, Hao, 2022. "A study on renewed perspectives of electrified road for wireless power transfer of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    14. Mathiesen, B.V. & Lund, H. & Connolly, D. & Wenzel, H. & Østergaard, P.A. & Möller, B. & Nielsen, S. & Ridjan, I. & Karnøe, P. & Sperling, K. & Hvelplund, F.K., 2015. "Smart Energy Systems for coherent 100% renewable energy and transport solutions," Applied Energy, Elsevier, vol. 145(C), pages 139-154.
    15. Alain Aoun & Hussein Ibrahim & Mazen Ghandour & Adrian Ilinca, 2019. "Supply Side Management vs. Demand Side Management of a Residential Microgrid Equipped with an Electric Vehicle in a Dual Tariff Scheme," Energies, MDPI, vol. 12(22), pages 1-21, November.
    16. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    17. Ioannis Skouros & Athanasios Karlis, 2020. "A Study on the V2G Technology Incorporation in a DC Nanogrid and on the Provision of Voltage Regulation to the Power Grid," Energies, MDPI, vol. 13(10), pages 1-23, May.
    18. Hasan Huseyin Coban & Wojciech Lewicki & Ewelina Sendek-Matysiak & Zbigniew Łosiewicz & Wojciech Drożdż & Radosław Miśkiewicz, 2022. "Electric Vehicles and Vehicle–Grid Interaction in the Turkish Electricity System," Energies, MDPI, vol. 15(21), pages 1-19, November.
    19. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    20. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:12:p:4803-:d:1174587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.