IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i11p4431-d1160169.html
   My bibliography  Save this article

Method of Identification and Assessment of Security Needs of a Region against the Threat of a Large Power Outage

Author

Listed:
  • Tomáš Fröhlich

    (Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01 Kladno, Czech Republic)

  • Zdeněk Hon

    (Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01 Kladno, Czech Republic)

  • Martin Staněk

    (Faculty of Biomedical Engineering, Czech Technical University in Prague, Sítná sq. 3105, 272 01 Kladno, Czech Republic)

  • Jiří Slabý

    (SECURU s.r.o. (Security Consulting), Vrbova 1427/19, 147 00 Praha, Czech Republic)

Abstract

The reliable supply of electricity is a key commodity that affects the functioning of today’s society. The long-term disruption of these supplies has far-reaching effects that will have a significant impact on all spheres of our lives. Infrastructure will stop operating and the provided services will be limited or cease. This article focuses on a comprehensive and systematic approach to strengthening the resilience of territorial units in relation to large-scale electricity supply disruption. The main part focuses on the process model of identification and evaluation of key elements of a region that are necessary to ensure the basic needs of its population. The aim of this model is to provide the security management with an effective tool on how to define the security needs in their region and determine specific infrastructure from the security perspective. The model includes a process of determining the priorities of infrastructure in accordance with their importance in the form of a methodological framework. The result is the establishment of a list of safety-relevant objects in the region, which is a necessary prerequisite for the design of an islanded operation and other measures leading to the reduction of impacts caused by large-scale power outages.

Suggested Citation

  • Tomáš Fröhlich & Zdeněk Hon & Martin Staněk & Jiří Slabý, 2023. "Method of Identification and Assessment of Security Needs of a Region against the Threat of a Large Power Outage," Energies, MDPI, vol. 16(11), pages 1-16, May.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4431-:d:1160169
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/11/4431/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/11/4431/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Azizivahed, Ali & Li, Li & Zhang, Jiangfeng, 2021. "A review on resilience studies in active distribution systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    2. Kamali, Sadegh & Amraee, Turaj, 2017. "Blackout prediction in interconnected electric energy systems considering generation re-dispatch and energy curtailment," Applied Energy, Elsevier, vol. 187(C), pages 50-61.
    3. Hassan Haes Alhelou & Mohamad Esmail Hamedani-Golshan & Takawira Cuthbert Njenda & Pierluigi Siano, 2019. "A Survey on Power System Blackout and Cascading Events: Research Motivations and Challenges," Energies, MDPI, vol. 12(4), pages 1-28, February.
    4. Knodt, Michèle & Stöckl, Anna & Steinke, Florian & Pietsch, Martin & Hornung, Gerrit & Stroscher, Jan-Philipp, 2023. "Power blackout: Citizens’ contribution to strengthen urban resilience," Energy Policy, Elsevier, vol. 174(C).
    5. Wang, Jing & Zuo, Wangda & Rhode-Barbarigos, Landolf & Lu, Xing & Wang, Jianhui & Lin, Yanling, 2019. "Literature review on modeling and simulation of energy infrastructures from a resilience perspective," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 360-373.
    6. Alcaraz, Cristina & Zeadally, Sherali, 2015. "Critical infrastructure protection: Requirements and challenges for the 21st century," International Journal of Critical Infrastructure Protection, Elsevier, vol. 8(C), pages 53-66.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Ce & Lin, Teng & Li, Canbing & Wang, Keyou & Ai, Qian, 2021. "Joining resilience and reliability evaluation against both weather and ageing causes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    2. Dillip Kumar Mishra & Daria Złotecka & Li Li, 2022. "Significance of SMES Devices for Power System Frequency Regulation Scheme considering Distributed Energy Resources in a Deregulated Environment," Energies, MDPI, vol. 15(5), pages 1-32, February.
    3. Wang, Chong & Ju, Ping & Wu, Feng & Lei, Shunbo & Pan, Xueping, 2021. "Sequential steady-state security region-based transmission power system resilience enhancement," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    4. Umunnakwe, A. & Huang, H. & Oikonomou, K. & Davis, K.R., 2021. "Quantitative analysis of power systems resilience: Standardization, categorizations, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    5. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    6. Polleux, Louis & Guerassimoff, Gilles & Marmorat, Jean-Paul & Sandoval-Moreno, John & Schuhler, Thierry, 2022. "An overview of the challenges of solar power integration in isolated industrial microgrids with reliability constraints," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Tadej Skrjanc & Rafael Mihalic & Urban Rudez, 2020. "Principal Component Analysis (PCA)-Supported Underfrequency Load Shedding Algorithm," Energies, MDPI, vol. 13(22), pages 1-9, November.
    8. Amitkumar V. Jha & Bhargav Appasani & Deepak Kumar Gupta & Taha Selim Ustun, 2022. "Analytical Design of Synchrophasor Communication Networks with Resiliency Analysis Framework for Smart Grid," Sustainability, MDPI, vol. 14(22), pages 1-17, November.
    9. Mkateko Vivian Mabunda & Ricky Munyaradzi Mukonza & Lufuno Robert Mudzanani, 2023. "The effects of loadshedding on small and medium enterprises in the Collins Chabane local municipality," Journal of Innovation and Entrepreneurship, Springer, vol. 12(1), pages 1-20, December.
    10. Gheorghe Grigoraș & Livia Noroc & Ecaterina Chelaru & Florina Scarlatache & Bogdan-Constantin Neagu & Ovidiu Ivanov & Mihai Gavrilaș, 2021. "Coordinated Control of Single-Phase End-Users for Phase Load Balancing in Active Electric Distribution Networks," Mathematics, MDPI, vol. 9(21), pages 1-29, October.
    11. Vasiliki Vita & Georgios Fotis & Christos Pavlatos & Valeri Mladenov, 2023. "A New Restoration Strategy in Microgrids after a Blackout with Priority in Critical Loads," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    12. Sonal, & Ghosh, Debomita, 2022. "Impact of situational awareness attributes for resilience assessment of active distribution networks using hybrid dynamic Bayesian multi criteria decision-making approach," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Bell, Alison J.C. & Rogers, M. Brooke & Pearce, Julia M., 2019. "The insider threat: Behavioral indicators and factors influencing likelihood of intervention," International Journal of Critical Infrastructure Protection, Elsevier, vol. 24(C), pages 166-176.
    14. Dui, Hongyan & Liu, Meng & Song, Jiaying & Wu, Shaomin, 2023. "Importance measure-based resilience management: Review, methodology and perspectives on maintenance," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    15. Jalilpoor, Kamran & Oshnoei, Arman & Mohammadi-Ivatloo, Behnam & Anvari-Moghaddam, Amjad, 2022. "Network hardening and optimal placement of microgrids to improve transmission system resilience: A two-stage linear program," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Sebastian Szymon Grzesiak & Adam Sulich, 2023. "Electromobility: Logistics and Business Ecosystem Perspectives Review," Energies, MDPI, vol. 16(21), pages 1-27, October.
    17. Zhang, Jintao & Bagtzoglou, Yiannis & Zhu, Jin & Li, Baikun & Zhang, Wei, 2023. "Fragility-based system performance assessment of critical power infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    18. Dmitry Borisoglebsky & Liz Varga, 2019. "A Resilience Toolbox and Research Design for Black Sky Hazards to Power Grids," Complexity, Hindawi, vol. 2019, pages 1-15, June.
    19. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Sun, Qirun & Wu, Zhi & Ma, Zhoujun & Gu, Wei & Zhang, Xiao-Ping & Lu, Yuping & Liu, Pengxiang, 2022. "Resilience enhancement strategy for multi-energy systems considering multi-stage recovery process and multi-energy coordination," Energy, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:11:p:4431-:d:1160169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.